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Abstract

The purpose of this research is to investigate the critical field of superconducting transition metal dichalcogenide
(TMD) monolayers MoX2 (X = S, Se, or Te), in particular for chemical potentials where there is vanishing spin-
orbit interaction (vanishing region). In general, it has been shown in research that Ising spin-orbit interaction
in TMD monolayers enhances the critical field of the superconducting phase. One may therefore expect that
the enhancement of the critical field will be suppressed when this spin-orbit interaction vanishes. In normal
phase MoX2 monolayers, it has been found that the band structure has a vanishing spin splitting near the
bottom of the lowest conduction band. In this research, a k · p model of the conduction band has been used
and superconductivity is described using Bogoliubov-De Gennes formalism. A numerical model has been
formulated from this model and formalism, and the results show that there is indeed a suppression of the
critical field for all 3 materials in the vanishing region. In relation with experiments, it also has been found
there is a minimum chemical potential when the TMD monolayer becomes superconducting. For MoS2, this
critical chemical potential is above the vanishing region which means a suppression of the critical field cannot
be measured here. On the other hand, the critical chemical potentials of MoSe2 and MoTe2 do possibly lie
below the vanishing region, but this requires that the temperature in experiment should be below 2 K. Next to
the critical field, also the topological phases have been briefly investigated.
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Chapter 1

Introduction

The main purpose of this research is to calculate the in-plane critical field of a superconducting transition
metal dichalcogenide (TMD) monolayer by means of a numerical model. In this thesis, the theory of the TMD
monolayer and a numerical model to calculate in-plane critical fields will be explained. TMD monolayers are
semiconductors that have a structure of the form MX2 and consist of a transition metal and two chalcogens. In
general, a transition metal is any metal that has a partially filled d-shell, but this thesis will only focus on group
6 transition metals like molybdenum (Mo) and tungsten (W). A chalcogen, on the other hand, is a group 16
atom such as sulfur (S) or selenium (Se). Although oxygen (O) is technically a chalcogen as well, it will not be
considered in this thesis, as it has very different chemical properties compared to other chalcogens. The crystal
structure of group 6 TMD monolayers is displayed in fig. 1.1. As it can be seen in the 3D figure (fig. 1.1a), the
transition metal atoms are sandwiched between two chalcogen layers and each layer has an equal number of
atoms (hence MX2). From the top view (fig. 1.1b), the structure is very similar to the honeycomb structure of
graphene, except it does not have a point inversion symmetry in the bonds due to the alternation between two
different atoms.

(a)

(b) (c)

Figure 1.1: The crystal structure of a group 6 TMD monolayer with the transition metal in blue and the chalcogens in
yellow. (a) 3D figure; (b) top view; (c) single unit cell. The figures are rendered with XCrysDen [1].

The history and research behind TMD monolayers is closely linked to that of graphene, which has been
experimentally discovered by Geim and Novoselov in 2004 [2]. Not much later, Novoselov et al. demonstrated
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the fabrication of other 2D materials like boron nitride and also some TMD monolayers like MoS2 by means of
a mechanical cleaving technique [3]. This technique is also used in follow-up experiments [4, 5]. It should be
noted, however, that the technique is not scalable, although research has been done to improve this [6]. Since
the experimental discovery of graphene, more and more research has been done on TMD monolayers (see also
fig. 1 in ref. [7]).

One important property of TMD monolayer semiconductors is that they have a direct bandgap, which has also
been found in experiments [4, 5]. This is different from bulk TMD, which has an indirect bandgap [8–10]. The
direct band gap of TMD monolayers makes it suitable for several potential applications, such as field effect
transistors [11] or photo-detectors [12]. Two other important properties of TMD monolayers are due to the
lack of inversion symmetry. The first one is that the interaction between electrons and circular polarized light
is valley-dependent [13, 14], which has potential for new type of devices called valleytronics [15]. The other
one is the exhibition of Ising spin-orbit interaction (Ising SOI), which fixes the electron spin in the out-of-plane
directions [16, 17]. This is different from Rashba spin-orbit interaction where the electron spins are in-plane.

This thesis will focus on the superconducting phase of TMD monolayers. When combining superconductivity
with the Ising SOI of TMD monolayers, one will obtain Ising superconductors. It has been shown in experiments
that TMD monolayers have an enhanced in-plane critical field [18]. This can be explained from the fact the Ising
SOI interaction keeps the electron spins out-of-plane, effectively protecting the spins from aligning along an
external in-plane magnetic field, which would break the superconductivity of the TMD monolayer. The focus
of this thesis will be particularly on TMD monolayers with nodal topological superconductivity, introduced by
Wang et al.[19] The source of this topology is the vanishing SOI at the lowest conduction band near the K point,
which will be discussed in more detail in this thesis. It is expected that the critical field will be suppressed
when the chemical potential crosses the vanishing spin-orbit interaction in the conduction band as a weaker
SOC implies a weaker protection.

The contents of this thesis are as follows:

• in chapter 2, the band structure of TMD monolayers in the normal phase will be visualized, which will
be needed to explain Ising superconductivity later;

• in chapter 3, Ising superconductivity will be explained in more detail using Bogoliubov-De Gennes
formalism for conventional superconductors;

• in chapter 4, a numerical model will be presented to calculate the in-plane critical field for Ising super-
conducting TMD monolayers, using the concepts introduced in the previous chapter;

• finally, a conclusion about my research will be given in chapter 5.
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Chapter 2

Normal phase band structure

In this chapter, the band structure of TMD monolayers in the normal phase will be discussed. The two tools that
will be covered in this chapter to analyze the band structure are the tight binding model and the k · p method.
In the first two sections, two different tight binding models based on earlier work will be introduced for the
TMD monolayer: the three-band model and the 11-band model. The three-band model reasonably describes
the three bands near the Fermi level, but does miss some important details of the conduction band that will
be relevant in this thesis. Nevertheless, it is a good starting point to explain how tight binding models can be
constructed. The 11-band model is more accurate and will also be used later in this thesis. The third section
introduces the k · p method, which is an approximation of the band structure close to a particular k-point in
reciprocal lattice. This method provides simple but accurate description of the band structure around that
point, which is very useful for analytical analysis.

2.1 Three-band tight binding model
The three-band model, based on work by Liu et al. [20], shows that the dz2 , dx y , and dx2−y2 orbitals of the
transition metal can provide a good description of the 3 bands near the Fermi level of a TMD monolayer. The
dz2 , dx y , and dx2−y2 orbitals (see fig. 2.1) are cubic harmonics and these are related to the spherical harmonics
encountered in quantum mechanics when deriving the eigenstates of the angular momentum operator:

|dz2〉 �
���Y

0
2

〉
, (2.1)

���dx y
〉
�

i
√

2

(���Y−2
2

〉
−
���Y

2
2

〉)
, (2.2)

���dx2−y2

〉
�

1
√

2

(���Y−2
2

〉
+
���Y

2
2

〉)
. (2.3)

One consequence of the so-called three-band approximation is that a triangular lattice (see fig. 2.2a) can be
used instead of a honeycomb lattice, as chalcogens atoms do not have to be considered. The three-band
approximation is accurate near the +K and −K points if only nearest neighbor hoppings are considered. If
second and third nearest neighbor hoppings are taken into account as well, a good description of the band
structure in the entire Brillouin zone can be provided except near the Γ point (see fig. 2.2b). This is also the
limitation of the three-band approximation, since p-orbitals of the chalcogens have a non-negligible contribution
to the band structure at the Γ point.

2.1.1 Onsite Hamiltonian
In order to calculate the band structure, a Python package called Kwant [21] will be used to ease the work. This
package requires to specify the onsite energies of the orbitals and all the possible hopping integrals between
two orbitals at different sites. Hopping integrals will be discussed in section 2.1.2 in more detail. Using the
basis

{
|dz2〉 , ���dx y

〉
, ���dx2−y2

〉}
, the Hamiltonian of the onsite energies is simple and given by

Ĥonsite �
*.
,

ε1 0 0
0 ε2 0
0 0 ε2

+/
-
. (2.4)

4



x y

z

(a)

x y

z

(b)

x y

z

(c)

Figure 2.1: Plots of the dz2 (a), dx y (b), and dx2−y2 (c) orbitals used in the three-band approximation.

a1
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M̂1M̂3

M̂2

(a)
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M
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b2

b1

(b)

Figure 2.2: (a) the lattice of the transition metal atoms with primitive vectors a1 and a2. The nearest neighbors (NN), second
nearest neighbors (SNN) and third nearest neighbors (TNN) are the hoppings from the gray center to the red, green and
blue dots respectively. The dotted lines indicate the mirror planes M̂1, M̂2, M̂3; (b) visualization of the first Brillouin zone
of the transition metal lattice with reciprocal vectors b1 and b2 and high symmetry points Γ, M, +K, and −K.

The dx y and dx2−y2 orbitals have to be degenerate, which can be explained from the fact that a TMD monolayer
has a D3h point-group symmetry. It will become clear later how such a point-group symmetry leads to a
degeneracy between these two orbitals. But first, consider some of the elements of the D3h symmetry group:

• Î, the identity operation (i.e. do nothing).
• Ĉ3, a counterclockwise rotation of 2π/3 around the z-axis (i.e. the axis perpendicular to TMD monolayer).
• M̂i , a reflection in the mirror plane indicated by the lines visualized in fig. 2.2a.

To understand why symmetries can make quantum states degenerate (in this case, the dx y and dx2−y2 orbitals),
let Ô be any operator in the D3h symmetry group. Because the Hamiltonian of a TMD monolayer has a D3h

point-group symmetry, it must commute with Ô, i.e. [Ĥ , Ô] � 0. But this may cause degeneracy between
quantum states as follows: suppose ��ψ

〉
is an eigenstate of the TMD monolayer with eigenenergy ε, then

Ô
(
Ĥ ��ψ

〉)
� Ô

(
ε ��ψ

〉)
� ε

(
Ô ��ψ

〉)
� Ĥ

(
Ô ��ψ

〉)
, (2.5)

where the latter expression is allowed due to the fact that [Ĥ , Ô] � 0. One can see from this expression that if
��ψ

〉
is an eigenstate, then Ô ��ψ

〉
is an eigenstate as well and it has the same eigenenergy as ��ψ

〉
.

This can also be applied to the dx y and dx2−y2 orbitals. First, suppose that ���dx y
〉

is an eigenstate of the
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Hamiltonian with eigenenergy ε2. Applying the operator M̂1 to this state gives1

M̂1
���dx y

〉
� i
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���Y
2
2
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(2.6)

To evaluate M̂1
���Y
±2
2

〉
, note that ���Y

±2
2

〉
∝ exp

(
±2iφ

)
and that M̂1 : φ → π/3 − φ, so that indeed M̂1

���Y
±2
2

〉
�

exp(±2πi/3) ���Y
∓2
2

〉
. From what has been shown earlier in eq. (2.5), the state M̂1

���dx y
〉

also has to be an eigenstate
with eigenenergy ε2. Because ���dx y

〉
and M̂1

���dx y
〉

are degenerate states, any linear combination of these two
states is also an eigenstate with eigenenergy ε2. But this means that

1
√

3

(
2M̂1

���dx y
〉
−
���dx y

〉)
�
���dx2−y2

〉
(2.7)

is also an eigenstate with eigenenergy ε2, which completes the proof that the dx y and dx2−y2 orbitals have to
be degenerate. Note that a different symmetry operation could have been chosen, such as Ĉ3, as long as the
operation is in D3h and results in a linear combination of dx y and dx2−y2 orbitals. Also note that the dz2 orbital
is not degenerate with the dx y and dx2−y2 orbitals, as there is no operation in D3h that transforms a dx y or dx2−y2

into a superposition with a dz2 orbital.

2.1.2 Hopping integrals
The hopping integrals considered by Liu et al. are all nearest neighbors (NN), second nearest neighbors (SNN),
or third nearest neighbors (TNN). For simplicity, these overlaps are defined as

ti j �
〈
φi (r) ���Ĥ

���φ j (r − a1)
〉
, (2.8)

ri j �
〈
φi (r) ���Ĥ

���φ j (r − 2a1 + a2)
〉
, (2.9)

ui j �
〈
φi (r) ���Ĥ

���φ j (r − 2a1)
〉
, (2.10)

where ��φ0
〉
� |dz2〉 , ��φ1

〉
�
���dx y

〉
, and ��φ2

〉
�
���dx2−y2

〉
, and these definitions will also be used in the remainder

of this section about the three-band model. These parameters only define the NN, SNN and TNN hopping
integrals for one specific direction. The main question remains what the hopping integrals in the other
directions are. It turns out that these depend on the hopping integrals defined in eqs. (2.8) to (2.10) due to
the D3h point-group symmetry of the Hamiltonian. The case for t00 is simple, all NN hoppings should have
the same energy due to the circular symmetry of the dz2 orbital (see also fig. 2.1a). The same applies for the
SNN hoppings (r00), or TNN hoppings (u00) as only dz2 orbitals are involved. All the other hopping integrals,
however, involve dx y and/or dx2−y2 orbitals and from their plots (figs. 2.1b and 2.1c), it is clear that these
integrals may be different for different NN, SNN or TNN. There are too many hopping intergrals to work them
all out, so only some examples are covered to give an idea how these integrals can be calculated. The results of
all the other hopping integrals will be tabulated in tables 2.1 and 2.2. It is also worth to mention that once all
the NN hopping integrals are found, all the TNN hopping integrals can easily found by analogy: one simply
has to replace t by u, a1 by 2a1, and a2 by 2a2.

Table 2.1: Overview of all NN hopping integrals in terms of the expressions in eqs. (2.8) to (2.10). Note that TNN hopping
integrals can be found by replacing t with u, a1 with 2a1, and a2 with 2a2.

neighbor positions
hopping orbitals ±a1 ±a2 ±(a2 − a1)

dz2 → dz2 t00 t00 t00

dz2 → dx y t01

√
3t02±t01

2 −

√
3t02±t01

2
dz2 → dx2−y2 t02

±
√

3t01−t02
2

±
√

3t01−t02
2

dx y → dx y t11
3t22+t11

4
3t22+t11

4
dx y → dx2−y2 t12

√
3

4 (t11 − t22) ∓ t12
√

3
4 (t22 − t11) ± t12

dx2−y2 → dx2−y2 t22
3t11+t22

4
3t11+t22

4

1The normalization factor 1
√

2
of the dx y orbital for convenience during the calculation has been omitted for convenience.
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Table 2.2: Overview of all SNN hopping integrals in terms of the expressions in eqs. (2.8) to (2.10). The hopping integrals
in the opposite directions are the same except that r01 should be replaced by r10.

neighbor positions
hopping orbitals 2a1 − a2 2a2 − a1 −a1 − a2

dz2 → dz2 r00 r00 r00
dz2 → dx y r01 0 −r01
dz2 → dx2−y2 −r01/

√
3 2r01

√
3

−
r01
√

3
dx y → dx y r11

3r22+r11
4 +

1
2
√

3r12
3r22+r11

4 −
1
2
√

3r12
dx y → dx2−y2 r12 0 −r12

dx2−y2 → dx2−y2 r22 � r11 +
2r12
√

3
3r11+r22

4 −
1
2
√

3r12
3r11+r22

4 +
1
2
√

3r12

In this section, the hopping between two orbitals with a relative displacement a is defined as

hi j (a) �

〈
φi (r) ���Ĥ

���φ j (r − a)
〉
. (2.11)

The first example that will be worked out is the hopping integral h12(a2) . In order to do that, one can exploit
the D3h point-group symmetry of the Hamiltonian. Suppose that Ô is a symmetry operation in D3h , then the
Hamiltonian can be rewritten as

Ĥ � Ô−1ÔĤ � Ô−1ĤÔ , (2.12)

as [Ĥ , Ô] � 0. What can be seen from this expression is that one can always sandwich the Hamiltonian between
a symmetry operator in D3h and its inverse. By making a smart choice for Ô, one can then express h12(a2) in
terms of the hopping integrals given in eqs. (2.8) to (2.10). As the center of the dx2−y2 orbital is at a2 while the
center of the known hopping integrals are at a1, it makes sense to choose Ô � M̂1, so that the ket part of h12(a2)
becomes

M̂1
���dx2−y2 (r − a2)

〉
�

1
2
(√

3 ���dx y (r − a1)
〉
−
���dx2−y2 (r − a1)

〉)
, (2.13)

which can be derived in a similar way as the mirror operation on the dx y orbital (see eq. (2.6)). Using the
fact that a reflection operation is unitary and equals its inverse (i.e. M̂1 � M̂−1

1 � M̂†

1), the bra part of h12(a2)
evaluates to [

M̂1
���dx y (r)

〉] †
�

1
2
(〈

dx2−y2 (r)���
√

3 +

〈
dx y (r)���

)
. (2.14)

Putting together then gives

h12(a2) �

√
3

4
(t11 − t22) +

3t21 − t12
4

, (2.15)

where t21 �

〈
dx2−y2 (r) ���Ĥ

���dx y (r − a1)
〉

still needs to be evaluated as it turns out to be a dependent hopping
integral. To derive an expression for t21, first make use of the M̂2 symmetry of the Hamiltonian so that

t21 �

〈
dx2−y2 (r) ���M̂2ĤM̂2

���dx y (r − a1)
〉
� −

〈
dx2−y2 (r) ���Ĥ

���dx y (r + a1)
〉
. (2.16)

Next, the translational symmetry of the Hamiltonian can be used and the corresponding operator is defined as
T̂a ��ψ(r)

〉
� ��ψ(r + a)

〉
. As the inverse of T̂a is simply T̂−a and the lattice is periodic in a1, t21 can be rewritten as

t21 � −

〈
dx2−y2 (r) ���T̂a1 ĤT̂−a1

���dx y (r + a1)
〉
� −

〈
dx2−y2 (r − a1) ���Ĥ

���dx y (r)
〉
. (2.17)

But from this, the complex conjugate of t12 can be recognized, and since all the hopping integrals in Liu et al.
are real, one will obtain t21 � −t12, so that the final expression will become

h12(a2) �

√
3

4
(t11 − t22) − t12. (2.18)

An analysis similar to that of h12(a2) can be done for h12(a2 − a1) , but instead of the M̂1 operation, the Ĉ−1
3

operation need to be used instead. The bra and ket terms will thus become

Ĉ−1
3

���dx2−y2 (r − a2 + a1)
〉
�

1
2
(√

3 ���dx y (r − a1)
〉
−
���dx2−y2 (r − a1)

〉)
, (2.19)〈

dx y (r) ��� Ĉ3 � −
1
2
(〈

dx2−y2 (r) ���
√

3 +

〈
dx y (r) ���

)
, (2.20)
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so that

h12(a2 − a1) �

√
3

4
(t22 − t11) + t12. (2.21)

The hopping integrals to the other nearest neighbors can also be found with this analysis by using the appro-
priate symmetry operations. However, by doing a similar derivation as the one for t21, it turns out that the
hopping integral in a given direction is the same as the one in the opposite direction except for a minus sign in
front of t01 and t12.

The calculation of the SNN hoppings is a bit different from the calculation of the NN and the TNN hoppings.
In case of NN hoppings, t01 and t10 (idem for t02 and t20) are dependent hopping integrals due to the M̂2
symmetry operation, while t01 and t02 (idem for t10 and t20) are independent. For SNN hoppings (where t is
replaced by r), however, this is the other way around and the dependence between r01 and r02 (and between
r10 and r20) can be found by means of the M̂3 symmetry operation:

r02 � −
r01
√

3
, (2.22)

r20 � −
r10
√

3
. (2.23)

It should also be remarked that in Liu et al. the parameter r2 should be the value for r10 in order to reproduce
their results2. The reason why a hopping integral r22 is ‘missing’ in Liu et al. (compare the NN and TNN case)
is because it is not an independent parameter. In order to see that, consider the hopping integrals r12 and r21.
Due to the M̂3 symmetry of the lattice,

r12 �

√
3

4
(r22 − r11) +

3r21 − r12
4

, (2.24)

r21 �

√
3

4
(r22 − r11) +

3r12 − r21
4

. (2.25)

It can easily be verified (by subtracting eq. (2.25) from eq. (2.24)) that the only way that both equations can hold,
is when r12 � r21. This, however, also means that either r22 or r11 must be a dependent hopping integral. In Liu
et al. this is chosen to be r22 and after some calculation, this hopping integral is given by

r22 � r11 +
2r12
√

3
. (2.26)

2.1.3 Spin-orbit interaction
One of interactions in the solid that will be very important later in the thesis is the spin-orbit interaction
(abbreviated as SOI in the rest of this thesis). This can be described as an atomic L̂ · Ŝ-like perturbation to
the Hamiltonian. Implementing this in the three-band model in Kwant is not too difficult. Using the basis{
|dz2 , ↑〉 , ���dx y , ↑

〉
, ���dx2−y2 , ↑

〉
, |dz2 , ↓〉 , ���dx y , ↓

〉
, ���dx2−y2 , ↓

〉}
, the onsite Hamiltonian need to be replaced by

Ĥonsite � Î2 ⊗ Ĥ0 + λ
(
Ŝx ⊗ L̂x + Ŝy ⊗ L̂y + Ŝz ⊗ L̂z

)
, (2.27)

where Î2 is a 2× 2 identity matrix and Ĥ0 is the unperturbed onsite Hamiltonian given by eq. (2.4). Next step is
to evaluate L̂x , L̂y , and L̂z operators for the given basis. Note that the cubic harmonics can be expressed in terms
of the spherical harmonics given in eqs. (2.1) to (2.3), which are eigenvectors of L̂z . After some calculation, it
can be found that L̂x � L̂y � 0 and that3

L̂z �
*.
,

0 0 0
0 0 2i
0 −2i 0

+/
-
, (2.28)

so that eq. (2.27) can be simplified to

Ĥonsite �

(
Ĥ0 +

λ
2 L̂z 0

0 Ĥ0 −
λ
2 L̂z

)
. (2.29)

Note that the Hamiltonian is block diagonal with respect to the spin Hilbert space, which makes the spin in
the z-direction good quantum numbers.

2The statement that r2 � r20 in Liu et al.’s erratum [22] is therefore wrong as well.
3The ~ is omitted for convenience as it can also be put into the λ.
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2.1.4 Results and discussion
The resulting band structure of the three-band model for MoS2 is given in fig. 2.3. To this end, the fitted
parameters of the generalized-gradient approximation (GGA) for MoS2 from Liu et al. are used. According to
Liu et al., the strength of the SOI (λ) is 0.073 eV for MoS2. It can be seen that the three-band model implemented
in Kwant (fig. 2.3a) visually agrees with the band structure in Liu et al. Furthermore, the splitting along a
trajectory through a +K point is opposite to that through a −K point. This confirms the statement in the
introduction that TMD monolayers have Ising SOI. The band structure with SOI of the 3-band model has two
remarkable properties: (1) there is no splitting in any band along the Γ-M trajectory, and (2) there is no splitting
in the conduction band at the ±K point. The former can be explained by means of symmetry arguments, but
the latter is not in agreement with expectation [23, 24].
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Figure 2.3: The 3-band structure of MoS2 from Liu et al.’s paper: (a) no SOI; (b and C) SOI interaction with the trajectory
through a +K point (b) or −K point (c). The red lines indicate spin-up bands, the blue lines indicate spin-down bands.

To explain why there is no splitting along the Γ-M trajectory, recall that if [Ĥ , Ô] � 0 and ��ψ
〉

is an eigenstate
of Ĥ, then Ô ��ψ

〉
is also an eigenstate with same eigenenergy as ��ψ

〉
. For the M and Γ point, the time reversal

operator T̂ can be used. It should be noted that T̂ is an antilinear and antiunitary operator, which requires
caution as computation with such operators is a bit different than with unitary and linear operators. Both
the tight-binding Hamiltonian Ĥ(k) and the spin-orbit Hamiltonian are symmetric under time reversal, i.e.
[Ĥ , T̂ ] � 0. This also implies that for the tight-binding Hamiltonian

Ĥ(k) � T̂ −1Ĥ(k)T̂ � Ĥ∗(−k). (2.30)

Furthermore, the time reversal operator flips crystal momentum and spin so that

T̂ ��ψ
〉
� T̂ |k, ↑↓〉 � exp

(
iϕ

)
|−k, ↓↑〉 , (2.31)

where ϕ is some phase. The states ��ψ
〉

and T̂ ��ψ
〉

are not only degenerate, but also always orthogonal due to
fact that the spin is a half-integer. All states are therefore at least twofold degenerate and this is also known as
Kramer’s degeneracy theorem. From eq. (2.31), it is clear that if k and−k represent equivalent crystal momenta,
then there will be no spin splitting at crystal momentum k. It is then straightforward to see that the Γ and M
points have no spin splitting, namely if k is such a point, then −k is such a point as well. However, in order to
explain that there is no splitting along the Γ-M trajectory, one need the mirror symmetry along that trajectory.
If k is at the trajectory, then M̂i |k, ↑↓〉 � exp

(
iϕ

)
|k, ↓↑〉 and thus there is no spin-splitting along the Γ-M

trajectory due to the mirror symmetry.

To explain why there is no splitting of the conduction band in the three-band model at the ±K point, note that
an eigenstate at point k in reciprocal space can be expressed as

��ψ(k), ↑↓
〉
� α(k) ���Y

−2
2 , ↑↓

〉
+ β(k) ���Y

0
2 , ↑↓

〉
+ γ(k) ���Y

2
2 , ↑↓

〉
. (2.32)

For such states, the first order energies of the SOI is given by〈
ψ(k), ↑↓��L̂z Ŝz ��ψ(k), ↑↓

〉
� ±

(
|γ(k) |2 − |α(k) |2

)
. (2.33)

It is clear from this expression that there will be no splitting if |γ(k) | � |α(k) |, which is for example the case
for the dz2 , dx y and dx2−y2 orbitals. From fig. 2 in Liu et al.’s paper, it can be seen that the eigenstate of the
conduction band at the ±K point is |dz2〉 , and this will not be split by SOI. It can also be derived analytically
using eqs. (15) to (18) from Liu et al. that

〈
dz2

���Ĥ(k)���dx y
〉
�

〈
dz2

���Ĥ(k)���dx2−y2

〉
� 0 if k is a ±K point. This

means that the |dz2〉 state is decoupled from the other orbitals and thus |dz2〉 is one of the eigenstates at the
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±K point. As mentioned earlier, however, there is some splitting expected in the conduction band and this
will only be visible when the p-orbitals of the chalcogen atoms are included, which will be shown later in the
11-band model. This splitting at the conduction band will also be relevant later in this thesis, as this is needed
to describe the vanishing SOI in the conduction band.

2.2 11-band tight binding model
As discussed in the previous section, the three-band model does not reproduce the expected SOI splitting
in the conduction band at the ±K point. Therefore, the more accurate 11-band model of Fang et al.[25] will
be used instead. It has already been explained in detail how to calculate dependent hopping integrals using
symmetries in section 2.1, so it will not be done again in this section.

2.2.1 Orbitals and hopping integrals
The orbitals that are included in the 11-band model are the 5 d-orbitals of the transition metal and the 3
p-orbitals of both the top and the bottom chalcogen atoms (remember fig. 1.1a in the introduction). The 5
d-orbitals are dz2 , dx y , dx2−y2 , dxz and dyz , and the last two orbitals are, just like the other 3 discussed in the
three-band model, cubic harmonics that are related to the spherical harmonics according to

|dxz〉 �
1
√

2

(���Y−1
2

〉
−
���Y

1
2

〉)
, (2.34)

���dyz
〉
�

i
√

2

(���Y−1
2

〉
+
���Y

1
2

〉)
. (2.35)

The two chalcogen atoms each have a px , py and pz orbital that are related to the spherical harmonics according
to

��px
〉
�

1
√

2

(���Y−1
1

〉
−
���Y

1
1

〉)
, (2.36)

���py
〉
�

i
√

2

(���Y−1
1

〉
+
���Y

1
1

〉)
, (2.37)

��pz
〉
�
���Y

0
1

〉
. (2.38)

It is convenient to hybridize the p orbitals of the top and bottom layer as follows:

��po
x
〉
�

1
√

2

(���pA
x

〉
−
���p

B
x

〉)
, ���p

o
y

〉
�

1
√

2

(���pA
y

〉
−
���p

B
y

〉)
, ��po

z
〉
�

1
√

2

(���pA
z

〉
+
���p

B
z

〉)
, (2.39)

��pe
x
〉
�

1
√

2

(���pA
x

〉
+
���p

B
x

〉)
, ���p

e
y

〉
�

1
√

2

(���pA
y

〉
+
���p

B
y

〉)
, ��pe

z
〉
�

1
√

2

(���pA
z

〉
−
���p

B
z

〉)
, (2.40)

where A and B indicate the the top and bottom layer respectively. These hybridized p orbitals are eigenstates
of the mirror operation in the x y-plane M̂x y , which will be useful later on. The two chalcogen atoms in the
top and bottom layer can effectively be replaced with one atom in the transition metal layer, and these effective
atoms have these 6 hybridized orbitals.

The 11-band model takes the following hoppings into account:

• All nearest neighbor hoppings between two transition metal atoms (NN M-M).
• All nearest neighbor hoppings between two chalcogen atoms (NN X-X).
• All nearest neighbor hoppings between a chalcogen atom and a transition metal atom (NN X-M).
• Some second nearest neighbor hoppings between a chalcogen atom and a transition metal atom (SNN

X-M). This is done for improved accuracy.

The number of possible hopping directions times the number of orbitals in the model gives a lot of parameters.
Fortunately, most of these parameters can be eliminated by considering the M̂x y symmetry of the Hamiltonian.
To this end, one has to check whether the orbitals correspond to an eigenvalue of 1 or −1 under the M̂x y

operation. An eigenvalue of 1 means that the orbital is even under M̂x y while an eigenvalue of −1 means that
the orbital is odd under M̂x y . It can be found out that the dz2 , dx y , dx2−y2 , pe

x , pe
y , and pe

z orbitals are even under
M̂x y , while the dxz , dyz , po

x , po
y , and po

z orbitals are odd under M̂x y . The key point is that there is no hopping
between an even and an odd orbital. In order to see this, let ��φi (r)

〉
and ���φ j (r − a)

〉
be an even and odd orbital
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respectively. Note that the hopping direction a lies in the x y-plane so that this will not be affected when M̂x y
is applied. However, this means that〈

φi (r)���Ĥ
���φ j (r − a)

〉
�

〈
φi (r)���M̂x yĤM̂x y

���φ j (r − a)
〉
� −

〈
φi (r)���Ĥ

���φ j (r − a)
〉
, (2.41)

and the only way this can hold is when the hopping integral is 0. Therefore, only hopping integrals between two
even orbitals or two odd orbitals have to be considered, and this reduces the amount of parameters significantly.

2.2.2 Spin-orbit interaction

Just like in the three-band model, an L̂ · Ŝ-like, momentum-independent SOI is used. It should be kept in mind,
however, that the strength of the interaction at the transition metal is different than at the chalcogen atoms.
The spin orbit Hamiltonian can thus be expressed like

ĤSOI �
(
λML̂M + λXL̂A

X + λXL̂B
X

)
· Ŝ. (2.42)

Unlike in the three-band model, there will be an x and y component of the angular momentum, which suggest
that the z component of the spin may not be a good quantum number. However, it will turn out that spin in the
z-component will be (approximately) a good quantum number, and one can thus still classify the interaction
as Ising SOC. In order to understand why this happens, first note that coupling of spin-up and spin-down
due to the x and y-component of the angular momentum can only happen between the states ���Y

m
l , ↑↓

〉
and

���Y
m±1
l , ↓↑

〉
4. These two states, however, are not both even or both odd under the M̂x y symmetry operation,

as discussed in section 2.2.1, which means that there cannot be any coupling between these two states. Now
consider orbitals ��ψe

〉
and ��ψo

〉
that are even and odd respectively under the M̂x y operation. Let the energy

difference of these orbitals (without SOI) be ∆ε(k) at crystal momentum k. Furthermore, suppose that the
matrix elements of the x and y-component of the SOI is given by λ

〈
ψe , ↑��L̂x Ŝx + L̂y Ŝy ��ψo , ↓

〉
� t1(k) and

λ
〈
ψe , ↓��L̂x Ŝx + L̂y Ŝy ��ψo , ↑

〉
� t2(k). The z component of the SOI will cause a splitting t3((k)) and t4(k) in

the spin space for the even and odd orbital respectively. Using the basis
{��ψe , ↑

〉
, ��ψo , ↑

〉
, ��ψe , ↓

〉
, ��ψo , ↓

〉}
The

Hamiltonian with SOI interaction will thus become

Ĥ �

*...
,

∆ε(k)/2 + t3(k)/2 0 0 t1
0 −∆ε(k)/2 + t4(k)/2 t∗2 0
0 t2 ∆ε(k)/2 − t3(k)/2 0
t∗1 0 0 −∆ε(k)/2 − t4(k)/2

+///
-

. (2.43)

From this expression, it can be concluded that the z component of the spin is approximately a good quantum
number if | t1(k) | , | t2(k) | � ��∆ε(k) ± t3,4(k)��. This is the case for the most part of the band structure as ∆ε(k)
can be in the order of multiple eV, while the strength of the SOI is only in order of 50–80 meV for MoS2. The
only way mixing of spin-up and spin-down may occur, is when even and odd bands would cross each other
if there would be no SOI. In fact, the spin orbit-interaction will cause small anticrossings between such bands
and at these anticrossings, mixing of spin-up and spin-down will occur.

2.2.3 Results and discussion
The results of the 11-band model for MoS2 are displayed in fig. 2.4. The used fit parameters are based on the
DFT calculations, and can be found in table VII of Fang et al.’s paper. The strength of the SOI can also be found
and is given in table VIII. The resulting band structure in fig. 2.4a is calculated with Kwant, and is in agreement
with the one in Fang et al.’s paper (fig. 3). The band structure with SOI is displayed in fig. 2.4b. As discussed
in section 2.2.2, mixing of spin-up and spin-down states is not visible in the figure, except where an even and
odd orbital would cross each other (see fig. 2.4c).

In the three-band model, it has been shown that there was no splitting in the conduction band at the +K point
due to the fact that the dz2 orbital is decoupled from the dx y and dx2−y2 orbitals. In the 11-band model, these
is a small splitting of the conduction band (see fig. 2.4d). In first order, this splitting cannot be caused by the
other two d orbitals (dxz and dyz), as these states have to be decoupled from the dz2 orbital due to the M̂x y
symmetry. Thus, the origin of the splitting (in first order) have to be the p orbitals of the chalcogen atoms. In
table IV of Fang et al.’s paper, it indeed turns out that the eigenstate of the lowest conduction band has a small
contribution from the p orbitals of the chalcogen atoms:

��ψc
〉
≈ 0.9154i |dz2〉 + 0.4026 ���p

e
−1

〉
, (2.44)

4It is also worth to mention that this is also the reason why the three-band model did not have an x and y-component of angular
momentum.
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Figure 2.4: The 11-band structure of MoS2 from Fang et al.’s paper. The used fit parameters are from the DFT method.
(a) no SOI. Red-colored bands have p orbitals as eigenstate, whereas blue-colored bands have d orbitals as eigenstate.
Purple-colored bands have a mix of p and d orbitals as eigenstate; (b) SOI with trajectory through a +K point. The red lines
indicate spin-up bands, the blue lines indicate spin-down bands; (c) zoom of an anticrossing of two filled bands, indicated
with the green box in (b); (d) zoom of the conduction band at the +K point, indicated with a black rectangle in (b).

where ���p
e
−1

〉
�

(��pe
x
〉
− i ���p

e
y

〉)
/
√

2. From this expression, the splitting of the spin-up and spin-down band can
be approximated with first-order perturbation theory:

ε↑ − ε↓ ≈ λX (0.4026)2
( 〈

pe
−1 , ↑

���L̂ · Ŝ
���p

e
−1 , ↑

〉
−

〈
pe
−1 , ↓

���L̂ · Ŝ
���p

e
−1 , ↓

〉)
≈ −0.009 eV, (2.45)

which is a small splitting compared to that of the valence band ε↑ − ε↓ ≈ 0.15 eV (see also figure 4 of Fang et
al.).

2.3 k · p method around the ±K point
An interesting feature of the spin splitting of the conduction band in MoS2 is that the spin-up and spin-down
band cross each other near the±K point. Such a crossing does not always happen in all TMD monolayers. TMD
monolayers with molybdenum as transition metal usually have this crossing, but monolayers with tungsten
do not [26]. This crossing, however, is very important later on, as these are the source of nodal topological
superconductivity which will be explained in the next chapter. It is useful later on to have a simple, but accurate
expression of the conduction band near the ±K point, and this can be done by deriving a k · p model.
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2.3.1 k · p model
In order to set up a k ·p model around a symmetry point, a set of eigenstates at that point in reciprocal space is
required. Most models only pick (approximate) eigenstates of the lowest conduction band and highest valence
band, and this is also sufficient in this case. According to the three-band model (section 2.1), the eigenstates of
the conduction and valence band at the ηK point are given by

��ψcb
〉
� |dz2〉 , (2.46)

���ψ
η
vb

〉
�

1
√

2

(���dx2−y2

〉
+ iη ���dx y

〉)
, (2.47)

respectively, where η represents either +1 or −1. Using the basis
{��ψcb

〉
, ���ψ

η
vb

〉}
, the most general form of the

Hamiltonian is given by

Ĥη � fI ,η (kx , ky ) Î + fX,η (kx , ky )X̂ + fY,η (kx , ky )Ŷ + fZ,η (kx , ky )Ẑ, (2.48)

where kx , ky represents the crystal momentum with respect to the ηK point, Î is the identity matrix, and X̂,
Ŷ, and Ẑ are the Pauli matrices. The identity matrix and the Pauli matrices namely form a basis for all 2 × 2
hermitian matrices. The k · p method approximates the Hamiltonian for small kx , ky by treating a deviation
from the symmetry point as a perturbation5. fi ,η (kx , ky ) in eq. (2.48) can therefore be written out as a Taylor
series. In this case, it is sufficient to go up to second order, which means that the most general form of fi ,η (kx , ky )
is given by

fi ,η (kx , ky ) � a i
0 + a i

1,x kx + a i
1,y ky + a i

2,xx k2
x + a i

2,y y k2
y + a i

2,x y kx ky , (2.49)

which means that up to second order, the k · p Hamiltonian may be described by 24 parameters. However, a
lot of these parameters will vanish or are related to each other when the symmetries of the Hamiltonian are
considered. At the ηK point, the reciprocal space of the TMD monolayer has a C3h point-group symmetry (a
subgroup of D3h), which only contains the rotation operations and M̂x y . The rotation symmetries require that

Ĥη (kx , ky ) � Ĉ†3Ĥη
*
,

−kx −
√

3ky

2
,
−
√

3kx + ky

2
+
-
Ĉ3. (2.50)

Although the ηK point does not have a mirror symmetry and the time reversal symmetry, they do relate the
k · p Hamiltonian at the ηK point with the one at the −ηK point. In particular, the yz-plane mirror operation
M̂2 requires

M̂2Ĥη (kx , ky )M̂2 � Ĥ−η (−kx , ky ). (2.51)

Furthermore, the time reversal symmetry demands

T̂
−1Ĥη (kx , ky )T̂ � Ĥ∗−η (−kx ,−ky ). (2.52)

In order to find out which parameters in eq. (2.49) vanish or are related to each other, it helps to look at the
terms of the Taylor series in this equation separately, which will be done in the next series of paragraphs.

The zeroth order The most general form of the zeroth order k · p Hamiltonian is given by

Ĥ (0)
η � aI

0 Î + aX
0 X̂ + aY

0 Ŷ + aZ
0 Ẑ. (2.53)

As the k · p Hamiltonian has a C3h point-group symmetry, the rotation operator Ĉ3 must commute with Ĥ (0)
η .

This also means that the eigenstates of Ĥ (0)
η are also eigenstates of Ĉ3 and the corresponding eigenvalues are

given by

Ĉ3 ��ψcb
〉
� ��ψcb

〉
, (2.54)

Ĉ3
���ψ

η
vb

〉
� exp

(
2πηi/3

) ���ψηvb

〉
. (2.55)

5It’s also nice to mention that this perturbation of the Hamiltonian actually has the form k · p (hence the name) where k is the crystal
momentum with respect to the symmetry point and p the momentum operator.
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from this, the effect of the rotation operator on the identity (trivial) and the Pauli matrices can be calculated,
and are given by

Ĉ†3 Î Ĉ3 � Î , (2.56)

Ĉ†3X̂Ĉ3 � −
1
2

(
√

3ηŶ + X̂), (2.57)

Ĉ†3ŶĈ3 �
1
2

(
√

3ηX̂ − Ŷ), (2.58)

Ĉ†3ẐĈ3 � Ẑ. (2.59)

Using eq. (2.50), it is clear that the Î and Ẑ component in the zeroth order expression remains invariant, while
it requires for the X̂ and Ŷ component that

aX
0 � −

1
2

aX
0 +

√
3

2
ηaY

0 , (2.60)

aY
0 � −

1
2

aY
0 −

√
3

2
ηaX

0 . (2.61)

Both of these equations can only hold if aX
0 � aY

0 � 0. Thus, the C3h point-group symmetry of the k · p
Hamiltonian requires that the zeroth order expression does not have an X̂ and Ŷ component, but aI

0 and aZ
0 are

free parameters. Using physical intuition, one can express the zeroth order k · p Hamiltonian as

Ĥ (0)
η � −µÎ +

Eg

2
(Î + Ẑ), (2.62)

where µ represents the chemical potential and Eg the band gap energy. It is convenient to set µ � 0 as this term
only shifts the eigenenergies of the system, and this will also be done in the remainder of this chapter.

The first order The most general form of the first order k · p Hamiltonian is given by

Ĥ (1)
η �

(
aI

x kx + aI
y ky

)
Î +

(
aX

x kx + aX
y ky

)
X̂ +

(
aY

x kx + aY
y ky

)
Ŷ +

(
aZ

x kx + aZ
y ky

)
Ẑ. (2.63)

Using the rotational symmetry requirement given in eq. (2.50) and using the relations given in eqs. (2.56)
to (2.59), the Î component is given by

aI
x kx + aI

y ky �
1
2
[
−aI

x

(
kx +

√

3ky
)
+ aI

y

(√
3kx − ky

) ]
. (2.64)

The same expression can be obtained for the Ẑ by replacing I by Z in the equation. The equation has to hold for
all kx , ky and this requirement can only be satisfied if aI

x � aI
y � aZ

x � aZ
y � 0. Thus, the first order expression of

the k ·p Hamiltonian has no Î and Ẑ component. For the X̂ component, the following equations from eq. (2.50)
can be derived:

aX
x kx + aX

y ky � −
1
4
[
−aX

x

(
kx +

√

3ky
)
+ aX

y

(√
3kx − ky

) ]
+

√
3

4
η
[
−aY

x

(
kx +

√

3ky
)
+ aY

y

(√
3kx − ky

) ]
.

(2.65)

And similarly for the Ŷ component

aY
x kx + aY

y ky � −
1
4
[
−aY

x

(
kx +

√

3ky
)
+ aY

y

(√
3kx − ky

) ]
−

√
3

4
η
[
−aX

x

(
kx +

√

3ky
)
+ aX

y

(√
3kx − ky

) ]
.

(2.66)

Since these equations have to hold for all kx and ky , separate equations for the kx and ky terms can be set up,
which gives the following equation in matrix form:

*....
,

−3 −
√

3 −
√

3η 3η
√

3 −3 −3η −
√

3η
√

3η −3η −3 −
√

3
3η

√
3η

√
3 −3

+////
-

*....
,

aX
x

aX
y

aY
x

aY
y

+////
-

� 0. (2.67)
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The equations in row 2 and row 3 are equivalent as well as the ones in row 1 and row 4. From the equations in
the first two rows, it can be found that

aX
x � ηaY

y , (2.68)

aX
y � −ηaY

x . (2.69)

Together with the finding that the Î and Ẑ component should vanish, the first order Hamiltonian can thus be
written as

Ĥ (1)
η � η

(
aY

y kx − aY
x ky

)
X̂ +

(
aY

x kx + aY
y ky

)
Ŷ. (2.70)

For the derivation for this Hamiltonian, however, only the rotational symmetry of the Hamiltonian has been
considered6. The Hamiltonian already obeys the time reversal symmetry requirement in eq. (2.52), but the
mirror symmetry (eq. (2.51)) also requires that aY

x � 0. Using physical intuition, the first order Hamiltonian
can be written as

Ĥ (1)
η � t1a

(
ηkxX̂ + kyŶ

)
, (2.71)

where a is the lattice constant, the distance between two nearest transition metal or chalcogen atoms, and t1
represents the effective linear coupling between the conduction band and valence band.

The k ·p Hamiltonian up to first order is sometimes called the massive Dirac fermion model and was introduced
by Xiao et al. in 2012 [16]. It should be noted that the effective linear coupling produces an isotropic band
structure around the ηK point. In order to understand this, it should be noted that only the magnitude of the
coupling will affect the eigenenergies of the two bands, which is given by t1a

√
k2

x + k2
y � t1 |k|a. Clearly, the

magnitude of the coupling only depends on the magnitude of the crystal momentum with respect to the ηK
point and the band structure is thus isotropic.

The second order To explain the second order terms of the k · p Hamiltonian, it is useful to rewrite the
coefficients of the components as

a i
2,xx k2

x + a i
2,y y k2

y + a i
2,x y kx ky � αi

(
k2

x + k2
y

)
+ βi

(
k2

x − k2
y

)
+ 2γi kx ky . (2.72)

When considering how these terms change under the rotation operation as shown in eq. (2.50), one will get

k2
x + k2

y → k2
x + k2

y � |k|2 , (2.73)

k2
x − k2

y →

√
3

2
(
2kx ky

)
−

1
2
(
k2

x − k2
y

)
, (2.74)

2kx ky → −

√
3

2
(
k2

x − k2
y

)
−

1
2
(
2kx ky

)
. (2.75)

As can been seen from these expressions, the k2
x+k2

y term will remain invariant. This means this term, analogous
to the zeroth order of the k · p Hamiltonian, will only appear in the Î and Ẑ component. The 2kx ky and k2

x − k2
y

terms, on the other hand, transform exactly like kx and ky respectively under the rotation operator. These terms
will thus appear in the X̂ and Ŷ in a very similar way as in the first order expression of the k · p Hamiltonian.
There is a slight difference though: in order to preserve time reversal symmetry given by eq. (2.52), the solution
similar to eqs. (2.68) and (2.69) need to be put in a different from:

βY
� ηγX , (2.76)

γY
� −ηβX . (2.77)

After substituting βY and γY in the general expression of the k · p Hamiltonian, and considering the mirror
symmetry requirement in eq. (2.51), it can be found out that γX � 0. Again using physical intuition, the second
order terms of the k · p Hamiltonian can be expressed as

Ĥ (2)
η �

~2
|k|2

2m∗(1)
cb

Î + Ẑ
2

+
~2
|k|2

2m∗(1)
vb

Î − Ẑ
2

+ t3w a2
[ (

k2
x − k2

y

)
X̂ − 2ηkx kyŶ

]
, (2.78)

where m∗(1)
cb and m∗(1)

vb are the first order effective masses of the conduction band and valence band respectively,
a is the lattice constant, and t3w is an anisotropic coupling term, which will be explained later in more detail.

6One may ask whether the rotation in the other direction should be considered. However, this will give the exact same result.
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The masses are called the first order effective masses as these terms appear in first order perturbation theory.
The second order masses can be obtained by applying second order perturbation theory to the off-diagonal
first order k · p Hamiltonian, and the actual effective masses can be acquired by using

1
m∗vb/cb

�
1

m∗(1)
vb/cb

+
1

m∗(2)
vb/cb

. (2.79)

One of the first derivation of the second order k · p Hamiltonian is given by Rostami et al. in 2013 [27]. The
second order terms contribute to phenomena in the k · p model that cannot be described by the massive Dirac
fermion model. The first order effective mass terms are the first terms in the k ·p model that break the particle-
hole symmetry of the system, since usually m∗(1)

cb , −m∗(1)
vb . This is different from the second order effective

mass terms, as these terms terms do not break the particle-hole symmetry because

m∗(2)
cb � −m∗(2)

vb �
~2Eg

2t2
1 a2

. (2.80)

Furthermore, the anisotropic coupling term t3w is the first term that break the isotropic behavior of the system
around the ηK points. This is, however, not directly clear on first sight as the magnitude of the coupling seems
isotropic: √(

k2
x − k2

y

) 2
+ 4k2

x k2
y � |k|2

√
cos4(θ) + sin4(θ) + 2 sin2(θ) cos2(θ)

� |k|2
(
cos2(θ) + sin2(θ)

)
� |k|2.

(2.81)

However, the phase dependence is different from the linear effective coupling in eq. (2.71) and this will cause
triangular shaped contours.

Putting together Putting the terms in eqs. (2.62), (2.71) and (2.78) together and setting µ � 0, the final
expression for the k · p Hamiltonian is given by

Ĥη �
Eg

2
(
Î + Ẑ

)
+ t1a

(
ηkxX̂ + kyŶ

)
+

~2
|k|2

2m∗(1)
cb

Î + Ẑ
2

+
~2
|k|2

2m∗(1)
vb

Î − Ẑ
2

+ t3w a2
[ (

k2
x − k2

y

)
X̂ − 2ηkx kyŶ

]
.

(2.82)

This second order k · p model is the same as the one given in Fang et al.’s paper on the 11-band model (eq.
10) [25], but different parameter names are used. In table 2.3, the conversion from Fang et al.’s parameters to
the parameters in this thesis are shown as well the values for MoS2, MoSe2, WS2, and WSe2. Plots of the band
structure near the ηK point (without SOI) of MoS2 and WSe2 are given in fig. 2.5. For these plots, the first
principle fit parameters from table VI in Fang et al. are used.

Table 2.3: Conversion from Fang et al.’s k ·p parameters to parameters described in this text as well as the converted values
for MoS2 and WSe2. The energies and couplings are in eV while the effective masses are in ~2 Å−2 eV−1.

material
param. expression MoS2 MoSe2 WS2 WSe2

Eg f0 1.6735 1.4415 1.8126 1.5455
t1 f1 1.1518 0.9560 1.4073 1.1894
m∗(1)

cb ~2
[
2a2( f2 + f3)

] −1
3.7744 453.6217 0.3593 0.4050

m∗(1)
vb ~2

[
2a2( f2 − f3)

] −1
0.3644 0.4596 0.2865 0.3635

t3w f4 −0.0780 −0.0654 −0.0709 −0.0627
λvb f5 0.0746 0.0929 0.2153 0.2335
λcb f6 −0.0015 −0.0106 0.0148 0.0180

m∗cb see eq. (2.85) 0.0614 0.0715 0.0402 0.0442
m∗vb see eq. (2.86) −0.0753 −0.0847 −0.0537 −0.0574
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For small kx , ky 7, the first and second order terms of the k ·p Hamiltonian can be treated as a perturbation with
respect to the zeroth order. Second order perturbation theory can be used to derive an approximate expression
for the energy levels of the conduction band and valence band. Anisotropic coupling will be neglected first,
i.e. t3w � 0. In that case, the energy levels are quite easy to derive:

Ecb ≈ Eg +
~2
|k|2

2m∗(1)
cb

+
t2
1

Eg
|k|2a2 , (2.83)

Evb ≈
~2
|k|2

2m∗(1)
vb

−
t2
1

Eg
|k|2a2. (2.84)

From these expressions it is also easy to derive the actual effective masses of the conduction band and valence
band:

1
m∗cb

�
1
~2

∂2Ecb

∂|k|2
�����k�0

�
1

m∗(1)
cb

+
2t2

1 a2

~2Eg
, (2.85)

1
m∗vb

�
1
~2

∂2Evb

∂|k|2
�����k�0

�
1

m∗(1)
vb

−
2t2

1 a2

~2Eg
. (2.86)

Note that these expressions are consistent with eqs. (2.79) and (2.80). The numeric values of the effective masses
for MoS2, MoSe2, WS2, and WSe2 are given in table 2.3.

Now, consider the effect of anisotropic coupling, i.e. t3w , 0. In that case, the second order correction to the
energy for the conduction band (+) and valence band (−) is given by

E(2)
cb/vb � ±

t2
1 |k|

2a2 + t2
3w |k|

4a4 + 2ηt1t3w |k|3a3 cos(3θ)
Eg

, (2.87)

where θ represents the angle of the k vector with respect to the x-axis. It can be thus seen in this expression
that the anisotropic coupling causes triangular anisotropic energy contours, but as suggested earlier about
eq. (2.81), this will only be visible if there is an effective linear coupling t1.

2.3.2 Spin-orbit interaction
As discussed in the 11-band model, the z component of the spin is (approximately) a good quantum number
due to the M̂x y symmetry. Furthermore, the splitting at the −ηK points is reversed with the respect to the
splitting at the ηK points. The spin-orbit interaction can therefore be described with the following Hamiltonian:

ĤSOI � ηλcb
Î + Ẑ

2
Ŝz + ηλvb

Î − Ẑ
2

Ŝz , (2.88)

where Sz is the Pauli-Z matrix acting in the spin space, and λcb and λvb represent the strength of the spin-orbit
interaction of the conduction band and valence band respectively. This is related to the energy splitting at the
ηK point according to

λcb/vb � η
Ecb/vb ,↑ − Ecb/vb ,↓

2
. (2.89)

Note that λcb can be negative since it is possible that Ecb ,↑ < Ecb ,↓. The source of this are the p-orbitals at the
chalcogen atoms, as already demonstrated in the 11-band tight binding model discussed in section 2.2.

Using the fit parameters in Fang et al., The band structures near the +K point of MoS2 and WSe2 are visualized
in fig. 2.6. It can clearly be seen from these figures that MoS2 has a crossing of the spin-up and spin-down
conduction band, whereas WSe2 does not have such a crossing. In order to explain this difference between
MoS2 and WSe2, Two things need to be shown: (1) the condition when the spin-up band is lower in energy than
the spin-down band at the +K point, and (2) the fact that the spin-up band seemingly has a lower effective mass
than the spin-down band at the +K point. The first condition is already explained earlier and this is satisfied
when λcb < 0. The second condition is more tricky and requires to apply third order perturbation theory. To
keep the expression simple, the anisotropic coupling term will be ignored8. Treating the spin-orbit interaction

7Small kx , ky implies that the first and second order terms of the k · p Hamiltonian are much smaller than the bandgap.
8Anisotropic coupling does not affect the effective mass at the +K point anyway.
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Figure 2.5: Contour plots of: (a) the conduction band of MoS2; (b) the valence band of MoS2; (c) the conduction band of
WSe2; (d) the valence band of WSe2. These plots are exact solutions of the Hamiltonian near the +K point given in eq. (2.82).
Note that SOI has not been included. The anisotropic coupling effect is particularly visible in the valence band.

given in eq. (2.88) as an additional perturbation, an approximate expression can be derived for the eigenenergy
of the conduction bands using third order perturbation theory and is given by

Ecb ,s ≈ Eg + ηλcb s +
~2
|k|2

2m∗(1)
cb

+
t2
1 |k|

2a2

Eg


1 +

~2
|k|2

(
1/2m∗(1)

vb − 1/2m∗(1)
cb

)
+ η(λvb − λcb )s

Eg


, (2.90)

where s is either +1 or −1 representing the spin-up band and spin-down band respectively. The effective mass
at the +K point (η � 1) of these bands is thus given by

1
m∗cb ,s

�
1
~2

∂2Ecb ,s

∂|k|2
�����k�0,η�1

�
1

m∗(1)
cb

+
2t2

1 a2

~2Eg

(
1 +

λvb − λcb

Eg
s
)
. (2.91)

As discussed in the earlier sections, the spin splitting of the conduction band is smaller than that at the valence
band, i.e. |λcb | < |λvb | . Furthermore, the energy splittings of spin-up and spin-down are much smaller than
the bandgap energy, i.e. |λcb | , |λvb | � Eg . Using this information, it is clear from eq. (2.91) that the effective
mass of the spin-up (s � +1) band is lower than that of the spin-down band (s � −1), regardless whether λcb is
positive or negative. It can thus be concluded that crossing of spin-up and spin-down in the conduction band
will occur if λcb < 0.
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Figure 2.6: (a) The band structure near the +K point of MoS2. Red indicates spin-up bands while blue indicates spin-down
bands; (b) zoom at the minimum of the conduction band of MoS2 indicated with rectangle in (a); (c) The minimum of the
conduction band near the +K point of WSe2. Unlike MoS2, there is no vanishing SOI.

It is useful later on to have an effective Hamiltonian of the spin-up and spin-down conduction band when
superconductivity will be included in the system. This can be done by calculating the third order energy of the
spin-up band and spin-down band separately and use them as diagonal elements of the effective Hamiltonian.
As mentioned several times earlier, the z-component of the spin is a good quantum number and thus there
should be no coupling between these two bands. Furthermore, it is assumed that |k| is so small that all terms
of order |k|4 or higher can be neglected and this results in an effective Hamiltonian given by

Ĥeff ,η � Eg +
~2
|k|2

2m∗(1)
cb

+ ηλcb Ŝz +
t2
1 |k|

2a2 + 2ηt1t3w |k|3a3 cos(3θ)
Eg

[
1 + η

λvb − λcb

Eg
Ŝz

]
. (2.92)

In literature about Ising superconductivity such as Wang et al.[19], the spin-independent anisotropic term
2ηt1t3w |k|3a3 cos(3θ)/Eg is left out as this term does not significantly change the band structure when com-
paring with the valence band. This also simplifies analytical analysis, which will be done in more detail in
section 3.2.2.
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Chapter 3

Ising superconductivity

In this chapter, the concept of Ising superconductivity will be explained. The main difference of Ising super-
conductivity with respect to conventional superconductivity is that Ising SOI needs to be included (hence the
name). In this thesis, a general model for (s-wave) superconductivity will be provided in section 3.1 using
Bogoliubov-De Gennes (BdG) formalism. In the next section (section 3.2.2), the model will also be applied to
the k ·p model of the TMD monolayer explained in section 2.3. Although the k ·p model makes it much simpler
to analytically analyze the TMD monolayer to a limited extent, it is more convenient to use numerical models,
which will be done in the next chapter. In the second-last section (section 3.3), more details will be given about
the topological phase in Ising superconductors. This will not be an extensive discussion about topology, but
rather the conditions for topology will be specified. In the last section, the findings obtained from the BdG
formalism will be compared to scientific literature.

3.1 Basic theory on superconductivity
The source of superconductivity in many-body systems is a small attractive interaction between electrons due
to electron-phonon interaction [28]. Such a weak attraction causes electron pairing near the Fermi surface and
these electron pairs have a lower energy than two separated electrons near the Fermi surface. An attractive
interaction thus causes the Fermi sphere to break down as it is higher in energy than paired electrons. According
to the BCS theory [29], the pairing should be between electrons with opposite crystal momentum and spin in
order to minimize the energy. These pairs also known as Cooper pairs. Furthermore, it is assumed that the
attractive interaction is isotropic and thus independent of the crystal momentum of the electrons. However, it
should also be noted that the attractive interaction is only between electrons that are close to the Fermi level
due to the fact that phonons can carry only a limited amount of energy called the Debye energy. Cooper pairs
and isotropic interaction are the foundation of conventional s-wave superconductivity this will also be applied
to Ising superconductors.

3.1.1 Hamiltonian
The Hamiltonian of a superconductor consist of two parts: the normal phase Hamiltonian and the Hamiltonian
for the attractive interaction. Using the two postulates of s-wave superconductivity mentioned in the beginning
of this section, the Hamiltonian can be expressed like

Ĥ �

∑
k

∑
σ′ ,n′;σ,n

(
〈σ′, n′ |ĤN (k) |σ, n〉 − µδσ′ ,σδn′ ,n

)
ĉ†kσ′n′ ĉkσn − V

∑
k,l,n′ ,n

ĉ†k↑n′ ĉ
†

−k↓n′ ĉ−l↓n ĉl↑n

� Ĥ0 + Ĥint ,

(3.1)

where µ is the chemical potential, V is the isotropic attractive interaction, and ĉ†kσn (ĉkσn) is the creation (an-
nihilation) operator for an electron with crystal momentum k, spin σ and orbital n. Note that the summation
is only over states that lie close enough to the chemical potential, due to the fact that phonons only have a
maximum amount of energy to couple Cooper pairs. The second term of the Hamiltonian represents the
interaction between two different Cooper pairs. Due to the fact that this term has 4 creation/annihilation oper-
ators, it is not possible to exactly solve the Schrödinger equation, i.e. finding the eigenvalues and eigenvectors
of the Hamiltonian. However, a mean field approximation can be performed, so that this term only has 2
creation/annihilation operators left, which makes diagonalization of the Hamiltonian possible. To this end,
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define
bk �

〈∑
n

ĉ
−k↓n ĉk↑n

〉
. (3.2)

The trick is then to add and subtract bk from the
∑

n ĉ
−k↓n ĉk↑n terms in the interaction Hamiltonian. The idea is

that
∑

n ĉ
−k↓n ĉk↑n only slightly deviates from it’s mean given by bk, so that

(∑
n ĉ
−k↓n ĉk↑n − bk

) 2
is negligible.

The interaction term of the Hamiltonian after mean field approximation is thus

Ĥint � −V
∑
k,l

*
,

b∗k



∑
n

ĉ
−k↓n ĉk↑n


+ bl



∑
n

ĉ†l↑n ĉ†
−l↓n


− b∗kbl+

-
. (3.3)

Next step is to define the superconducting pairing1 as

∆ � V
∑

l
bl , (3.4)

so that the interaction Hamiltonian can be simplified further to

Ĥint � −
∑
k,n

(
∆∗ ĉ

−k↓n ĉk↑n + ∆ĉ†k↑n ĉ†
−k↓n − ∆b∗k

)
. (3.5)

Using the commutation relations for electron creation/annihilation operators, the normal phase and interaction
Hamiltonian can be rewritten as

Ĥ0 �
1
2

∑
k

∑
σ′ ,n′;σ,n

(
〈σ′, n′ |ĤN (k) |σ, n〉 − µδσ′ ,σδn′ ,n

) (
ĉ†kσ′n′ ĉkσn − ĉkσn ĉ†kσ′n′ + δσ′ ,σδn′ ,n

)
(3.6)

Ĥint �
1
2

∑
k,n

[
∆∗

(
ĉk↑n ĉ

−k↓n − ĉ
−k↓n ĉk↑n

)
+ ∆

(
ĉ†
−k↓n ĉ†k↑n − ĉ†k↑n ĉ†

−k↓n

)
+ 2∆b∗k

]
, (3.7)

and that the total Hamiltonian can be rewritten as

Ĥ �
1
2

∑
k

Ĉ†kĤBdGĈk +

Tr
[
ĤN − µÎ

]

2
+
|∆|

2

V
, (3.8)

where
Ĉk �

[
ĉk↑1 , . . . , ĉk↑n , ĉk↓1 , . . . , ĉk↓n , ĉ

†

−k↑1 , . . . , ĉ
†

−k↑n , ĉ
†

−k↓1 , . . . , ĉ
†

−k↓n

] T
, (3.9)

and
ĤBdG (k) �

[
ĤN (k) − µσ̂0 ⊗ În −i∆σ̂y ⊗ În

i∆∗σ̂y ⊗ În −Ĥ∗N (−k) + µσ̂0 ⊗ În

]
, (3.10)

which is also known as the Bogoliubov-de Gennes (BdG) Hamiltonian. Further, σ̂0 and σ̂y are the identity
matrix and Pauli-y matrix in spin space respectively, and In is the identity matrix acting in the orbital space.

The next step is to diagonalize the BdG Hamiltonian. By calculating the eigenvalues and eigenvectors of the
BdG Hamiltonian, the BdG Hamiltonian can be rewritten as

ĤBdG (k) � ÛkD̂BdG (k)Û†k , (3.11)

where Û is a matrix with all normalized eigenvectors in the columns and D̂BdG is a diagonal matrix with all
the corresponding eigenvalues. The total Hamiltonian can then be rewritten as

Ĥ �
1
2

∑
k

P̂†kD̂BdG (k)P̂k +

Tr
[
ĤN − µÎ

]

2
+
|∆|

2

V
�

1
2

∑
k,i
εk,i p̂†k,i p̂k,i +

Tr
[
ĤN − µÎ

]

2
+
|∆|

2

V
, (3.12)

where P̂k � Û†kĈk, and p̂†k,i (p̂k,i) is the new creation (annihilation) operator for quasi-particles and quasi-holes
in the superconductor, which are sometimes called Bogoliubons. As the basis of the original BdG Hamiltonian
in eq. (3.10) contains both particles and holes, so does the diagonalized Hamiltonian. In order to find the
ground state and the exited states of the Hamiltonian, this has to be kept in mind: if a quasi-particle in stat i

1The superconducting pairing may be a complex value, but since only a single bulk TMD monolayer will be studied, the phase will not
be interesting.
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is present, then there is no quasi-hole in state i. However, if a creation operator for a quasi-particle is known,
then the creation operator for the corresponding hole can be found using the particle-hole symmetry of the
BdG Hamiltonian, which says

P̂ĤBdG (k)P̂ � −ĤBdG (−k), (3.13)

where, in this case, P̂ � τxK̂ , with τx the Pauli-x matrix in particle-hole space and K̂ the complex conjugation
operator. So if the creation operators create a quasi-particle with energy εk,i > 0, then there are creation
operators P̂P̂†

−k that create the corresponding quasi-hole with energy −εk,i . Therefore, in order to find the
ground state, all the quasi-hole creation operators should be converted in to quasi-particle creation operators
using the fermion commutation relation {p̂ , q̂} � 1. The total Hamiltonian with only the quasi-particle creation
operators is thus

Ĥ �

∑
εk,i>0

εk,i

(
p̂†k,i p̂k,i −

1
2

)
+

Tr
[
ĤN − µÎ

]

2
+
|∆|

2

V
. (3.14)

From this expression, it can be found that the ground state energy of the superconductor is given by2

Eg �

Tr
[
ĤN

]

2
+
|∆|

2

V
−

1
2

∑
εk,i>0

εk,i . (3.15)

Furthermore, the excitation energies of the superconductor are εk,i > |∆|. Unlike in normal conductors, where
excitation energies are infinitely small, superconductors will have hardly any scattering (and therefore zero
resistance) as a minimum energy of |∆| is required to perturb the ground state of the superconductor.

3.1.2 Obtaining the weak-coupling limit
In order to find the superconducting pairing ∆, the free energy needs to be minimized. The obtained super-
conducting pairing should also be consistent with the self-consistent gap equation (eq. (3.4)). This equation,
however, may give non-trivial solutions (∆ , 0), which do not globally minimize the free energy. On the other
hand, the self-consistent gap equation can be used when the isotropic interaction V needs to be calculated, if
∆0, the superconducting pairing at zero temperature and field, is known. Using the definitions specified earlier
in section 3.1.1, the expression of bk can be rewritten as

bk � −

〈∑
n

ĉk↑n ĉ
−k↓n

〉
� −

〈
Trtopright

[
ĈkĈ†k

] 〉
� −Trtopright

[
Ûk

〈
P̂kP̂†k

〉
Û†k

]
, (3.16)

where Trtopright indicates that the trace should be applied to the top right n × n submatrix of ĈkĈ†k, which is a
4n × 4n matrix. To evaluate

〈
P̂kP̂†k

〉
, note that the diagonal matrix elements are simply unity minus the average

occupation of the quasi-particles or quasi-holes, which can be calculated using the Fermi-Dirac distribution.
On the other hand, the off-diagonal elements should be zero as eigenstates of the BdG Hamiltonian do not
contribute to the average of a creation-annihilation pair of two different states. The matrix elements of

〈
P̂kP̂†k

〉
are thus given by

〈
p̂k,i p̂

†

k, j

〉
�




0 if i , j
1 − 1

exp
(
−
εk,i
kB T

)
+1

if i � j

�




0 if i , j
1

exp
(
εk,i
kB T

)
+1

if i � j ,

(3.17)

where kB is the Boltzmann constant and T is the temperature. A problem of using the self-consistent gap
equation to calculate V , however, is that it does not look efficient: only the diagonal of a small upper-right part
of the matrix is actually used. Fortunately, there is a better way to get V given ∆0, but this requires to minimize
the free energy as well and the method will be explained later in this section.

From the final Hamiltonian in eq. (3.14), the grand partition function can be derived and is given by

Zgr � exp*.
,
−



Tr
[
ĤN − µÎ

]

2
+
|∆|

2

V


/kBT+/

-

∏
εk,i>0

2 cosh
( εk,i

2kBT

)
. (3.18)

2The chemical potential µ should not be included when finding the ground state. It is only there for convenience the free energy will
be calculated later on.
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From this, the free energy3 can then simply be calculated by

Φ � −kBT log
(
Zgr

)
�

Tr
[
ĤN − µÎ

]

2
+
|∆|

2

V
− kBT

∑
εk,i>0

log
(
2 cosh

( εk,i

2kBT

) )
. (3.19)

For the purpose of finding a ∆ that minimizes the free energy the trace term Tr
[
ĤN − µÎ

]
/2 can be left out as

it does not depend on ∆. Furthermore, as cosh is an even function, it simpler to sum over all eigenvalues and
divide the result by two. This is equivalent as the particle-hole symmetry requires that if there is a quasi-particle
with energy ε, then there is a quasi-hole with energy −ε. The expression for the free energy will thus become

Φ �
|∆|

2

V
−

1
2

kBT
∑
k,i

log
(
2 cosh

( εk,i

2kBT

) )
. (3.20)

For low temperatures, cosh
(
εk,i/2kBT

)
≈ exp

(��εk,i ��/2kBT
)
/2. so that the free energy in that limit becomes

Φ ≈
|∆|

2

V
−

∑
k,i

��εk,i ��
4
. (3.21)

This is also the exact value of the free energy if T � 0.

As mentioned earlier, the free energy expression can be used to find V given the superconducting pairing ∆0 in
case of zero temperature and zero field. To this end, the free energy (using the expression for low temperatures
eq. (3.21)) needs to be minimized by taking the derivative of eq. (3.20) with respect to |∆| . This gives the
expression

∂Φ
∂|∆|

�����|∆|�|∆0 |

�
2|∆|

V
−

1
4

∑
k,i

∂��εk,i ��
∂|∆|

�����|∆|�|∆0 |

� 0. (3.22)

This still requires to find an expression for ∂��εk,i ��
/
∂|∆| ���|∆|�|∆0 |

. Fortunately, because of the absence of a
magnetic field, the normal phase Hamiltonian is time reversal symmetric and this gives a relation between the
normal phase eigenstates for opposite k, as

ĤN (k) � T̂ −1ĤN (−k)T̂ . (3.23)

The time reversal operator is given by
T̂ �

(
iσ̂y ⊗ În

)
K̂ . (3.24)

Thus, if there is a quasi-particle in the normal phase with crystal momentum k, then the time reversal symmetry
requires there is a quasi-particle with opposite momentum and spin with the same energy. But these quasi-
particles form a Cooper pair together, which means that the BdG Hamiltonian can be block diagonalized such
that the blocks look like

ĤBdG (k, n) �

(
ξk,n ∆e iϕ

∆∗e−iϕ
−ξk,n

)
, (3.25)

where ξk,n represents the the nth eigenvalue of the normal phase4 at crystal momentum k, and ϕ is some
phase. The eigenvalues of this block are given by

εk,n � ±

√
ξ2

k,n + |∆|
2 , (3.26)

so that eq. (3.22) can be rewritten as
1
V

�
1
4

∑
k,n

1√
ξ2

k,n + |∆0 |
2
. (3.27)

From this expression, that it is easier to find V in terms of ∆0 than with the method explained in the beginning
of this section, as only the eigenvalues of the normal phase Hamiltonian are required in addition to ∆0. The
sum over k in the expression can also be converted into an integral as the possible crystal momenta form a
continuum in large systems and this gives

1
V

�
1
4

∑
n

~ωD∫
−~ωD

Nn (ξ)dξ√
ξ2 + |∆0 |

2
, (3.28)

3Since the Hamiltonian describes an open system with constant T and µ, it also also known the grand potential, but in the literature, it
is usually called the (Landau) free energy.

4This eigenvalue is the energy of the nth band with respect to the chemical potential µ.
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where Nn (ξ) represents the density of states (DOS) for the nth band, and ωD is the Debye frequency. As
explained earlier, the attractive interaction between Cooper pairs is due to electron-phonon interaction and the
maximum energy of the phonons ~ωD determines the cutoff energy of the integral. Assuming that the density
of states of all the bands are roughly constant in the interval [−~ωD , ~ωD], the integral can also be evaluated so
that

1
Ntot (0)V

�
1
4

~ωD∫
−~ωD

dξ√
ξ2 + |∆0 |

2
�

1
2

sinh−1
(
~ωD

|∆0 |

)
, (3.29)

where Ntot (0) �
∑

nNn (0) represents the total density of states at the chemical potential. In most super-
conductors Ntot (0)V � 1, which is also known as the weak-coupling limit. In that case, it can be found
that

|∆0 | � 2~ωD exp
(
−

2
Ntot (0)V

)
. (3.30)

This equation holds for any (time reversal symmetric) system with conventional s-wave superconductivity.
Note that the weak-coupling limit can also be achieved by imposing |∆0 | � ~ωD .

3.1.3 Universal critical temperature
At finite temperatures, the general free energy expression (eq. (3.20)) should be used instead. Minimizing the
free energy by taking the derivative with respect to |∆| gives

1
V

�
1
4

∑
n

~ωD∫
−~ωD

tanh
*..
,

√
ξ2 + |∆|2

2kBT
+//
-

Nn (ξ)dξ√
ξ2 + |∆|2

. (3.31)

Using this expression, an universal expression for the critical temperature of all conventional s-wave super-
conductors can be derived. At the critical temperature Tc , the superconducting pairing ∆ should become zero.
Again assuming that the density of states of all the bands are roughly constant in the interval [−~ωD , ~ωD],
one can rewrite the expression as

2
Ntot (0)V

�
1
2

~ωD∫
−~ωD

tanh
(
|ξ |

2kBTc

) dξ
|ξ |

� ln
( 2~ωD

πkBTc

)
+ γ, (3.32)

where γ � 0.577 . . . is the so-called Euler’s constant. Working out further gives

kBTc �
2eγ

π
~ωD e−

2
Ntot (0)V ≈

|∆0 |

1.764
, (3.33)

where the weak-coupling limit (eq. (3.30)) has been used in the last step. This equation fixes the ratio between
the critical temperature and the superconducting pairing in the weak-coupling limit and is valid for any material
with conventional s-wave pairing as long asNtot (0)V � 1.

One may be concerned whether the ∆ that minimizes the free energy given by equation eq. (3.31) converges
when the Debye energy diverges. By carefully analyzing the equation, it can be found that this is indeed the
case and the analysis is given in appendix A.

3.2 Critical magnetic field
In the previous section, it has been shown that there is an universal relation of the critical temperature: eq. (3.33)
applies for any time-reversal symmetric normal phase Hamiltonian in the weak-coupling limit. For the critical
magnetic field, however, there is no such universal relation, and it depends on the SOI of the material what the
critical field will be. In this section, the critical field of a simple 2D free electron model will be discussed first

3.2.1 2D free electron model
The normal phase Hamiltonian of the 2D free electron model without external field is given by

ĤN �

(
~2k2

2me
− µ

)
σ̂0. (3.34)
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When an external field is applied to the system, the two spin states will be split, which is also known as the
Zeeman effect. The Hamiltonian due to this external field is given by

ĤZeeman �
1
2
µB ge σ̂ ·Hext ≈ µB σ̂ ·Hext , (3.35)

where σ̂ � [σ̂x , σ̂y , σ̂z]T , µB is the Bohr magneton and ge ≈ 2 is the gyromagnetic ratio of the electron spin.
Plugging the sum of the normal phase Hamiltonian and the Zeeman Hamiltonian in the BdG Hamiltonian
(eq. (3.10)) gives

ĤBdG �



~2k2

2me
− µ + µBHz µB

(
Hx − iHy

)
0 −∆

µB
(
Hx + iHy

)
~2k2

2me
− µ − µBHz ∆ 0

0 ∆∗ −
~2k2

2me
+ µ − µBHz µB

(
−Hx − iHy

)
−∆∗ 0 µB

(
−Hx + iHy

)
−

~2k2

2me
+ µ + µBHz



(3.36)

The eigenvalues can be derived analytically and are given by

εk � ±

�������
µBHext ±

√[
~2k2

2me
− µ

] 2

+ |∆|
2
�������
, (3.37)

where Hext �

√
H2

x + H2
y + H2

z . Plugging these eigenvalues in the expression of the free energy (eq. (3.20))
results in

Φ �
|∆|

2

V
− kBT

∑
k,s�±1

log
*..
,
2 cosh

*..
,

µBHext + s
√[

~2k2

2me
− µ

] 2
+ |∆|

2

2kBT
+//
-

+//
-
. (3.38)

Taking the derivative with respect to |∆| and equating this to zero gives the following expression

∂Φ
∂|∆|

�
2
V
−

1
2

∑
k,s�±1

tanh
*..
,

µBHext + s
√[

~2k2

2me
− µ

] 2
+ |∆|

2

2kBT
+//
-

s√[
~2k2

2me
− µ

] 2
+ |∆|

2
� 0, (3.39)

and converting summation into integration gives

1
V

�
1
4

∑
s�±1

~ωD∫
−~ωD

tanh
*..
,

µBHext + s
√
ξ2 + |∆|2

2kBT
+//
-

sNs (ξ)dξ√
ξ2 + |∆|2

. (3.40)

In the weak-coupling limit, eqs. (3.30) and (3.33) can be recovered from this equation.

The critical field Hc at zero temperature with respect to the pairing at zero temperature and field |∆0 | depends
on the type of system. In case of the 2D free electron model, if T � 0, ∆ � ∆0, eq. (3.40) will reduce to eq. (3.29)
as long as µBHext < |∆0 | . This suggests that at zero temperature, the free energy has an extrema at ∆ � ∆0 as
long as µBHext < |∆0 | . However, this does not always mean that the global minimum of the free energy is at
that point: the normal phase ∆ � 0 may minimize the free energy as well. Therefore, in order to find the critical
field at zero temperature, one need to compare the free energy of the superconducting phase with that of the
normal phase. At the critical field, the difference in free energy should vanish so that

ΦN −ΦS �
Ntot (0)

4

∑
s�±1

~ωD∫
−~ωD

(�����µBHc + s
√
ξ2 + |∆0 |

2
�����
− ��µBHc + s |ξ | ��

)
dξ − |∆0 |

2

V
� 0. (3.41)

Assuming that µBHc < |∆0 | < ~ωD , working out the integral gives

2|∆0 |
2

Ntot (0)V
� ~ωD

√
(~ωD )2

+ |∆0 |
2
+ |∆0 |

2 log
*..
,

~ωD +

√
(~ωD )2

+ |∆0 |
2

|∆0 |

+//
-
−

(
µBHc

) 2
− (~ωD )2. (3.42)

In the weak-coupling limit, 2/Ntot (0)V can be substituted using eq. (3.30). As |∆0 | � ~ωD in the weak-coupling
limit, the expression can be written as a Taylor series. When ~ωD →∞, the Taylor series will reduce to

µBHc �
|∆0 |
√

2
. (3.43)
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Substituting the |∆0 | for the expression in eq. (3.33) gives

µBHc ≈ 1.247kBTc . (3.44)

This expression of the critical field is in agreement with that of Clogston [30], and this is commonly known as
the Pauli paramagnetic limit.

3.2.2 Superconducting TMD monolayers
The BdG formalism can also be applied to the k · p model of the TMD monolayer in section 2.3. The effective
k · p Hamiltonian given in eq. (2.92) can be rewritten as

Ĥeff ,η (k) � Ak2
+

[
ηB + ηCk2

+

(
k3

x − 3kx k2
y

)
D
]

Ŝz � Ak2
+ f (k, η, B, C,D)Ŝz , (3.45)

where k �

√
k2

x + k2
y and A, B, C, and D are the material-dependent parameters that can be determined using

eq. (2.92). As stated at the end of section 2.3.2, the spin-independent trigonal warping term can be left out to
simplify analysis and this is done here as well.

Deriving the superconducting gap as well as the critical field and temperature can be done in a very similar
way as in the 2D free electron model in section 3.2.1. The BdG Hamiltonian of a TMD monolayer is given by

ĤBdG (k) �
[
Ĥeff ,η (k) + ĤZeeman − µσ̂0 −i∆σ̂y

i∆∗σ̂y −Ĥ∗eff ,−η (−k) − Ĥ∗Zeeman + µσ̂0

]
. (3.46)

The eigenvalues can be calculated analytically if the field has no component perpendicular to the TMD mono-
layer, i.e. it is a fully in-plane field. In that case the eigenvalues are given by

εk � ±

√
ξ2

k + f 2
k +

(
µBHext

) 2
+ |∆|

2
± 2

√
ξ2

k

[
f 2
k +

(
µBHext

) 2]
+ |∆|

2 (µBHext
) 2 , (3.47)

where ξk � Ak2
− µ and fk � f (k, η, B, C,D) from eq. (3.45).

Just as for the 2D free electron model, an expression for the free energy can be derived and minimized it by
setting the derivative of the free energy with respect to the superconducting gap to zero. When the temperature
and external field are set to zero, one can derive that

2
V

�
1
2

∑
k,s∈Sk

1√(
|ξk | + s | fk |

) 2
+ |∆0 |

2
�

1
2

~ωD∫
−~ωD

Ntot (ξ)dξ√
ξ2 + |∆0 |

2
, (3.48)

where Sk can be either a set with −1 and +1 as elements or −1 as only element. It depends on the energies in
the normal phase which set should be picked as these may not lie too far away from the chemical potential.
When converting the sum in eq. (3.48) into an integral, one will recover eq. (3.29). Similarly the expression for
the critical temperature will be

2
V

�
1
2

∑
k,s∈Sk

1
��|ξk | + s | fk |��

tanh
( ��|ξk | + s | fk |��

2kBTc

)
�

1
2

~ωD∫
−~ωD

tanh
(
|ξ |

2kBTc

)
Ntot (ξ)dξ
|ξ |

, (3.49)

which is the same equation as eq. (3.32) when the sum will be properly converted into an integral.

3.3 Topological phase
The possibility of topological superconductivity in TMD monolayers has recently been described by Wang
et al[19]. A non-trivial topological superconducting phase will occur if there are k points (also called nodal
points) in the superconductor where the energy gap between particle and hole excitations vanish. In normal
superconductors without any external field, this does not occur as it is known that in that case the gap between
particle and hole excitations is at least 2|∆|. The gap could be closed by means of an external field, but making
the field too large will break superconductivity. In case of the 2D free electron model, closing this gap at zero
temperature is not possible as the required field strength exceeds the Pauli limit. Ising superconductors, on the
other hand, have an enhanced critical field which increases the likelihood to find topological phases. In terms
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of BdG formalism, the nodal points can be found at the k points where the eigenvalues become zero. Using
the result of the k · p model, nodal points are found when

ξ2
k + f 2

k +
(
µBHext

) 2
+ |∆|

2
− 2

√
ξ2

k

[
f 2
k +

(
µBHext

) 2]
+ |∆|

2 (µBHext
) 2

� 0. (3.50)

And solving this equation for ξ2
k gives

ξ2
k �

(
µBHext

) 2
+ f 2

k − |∆|
2
± 2i |∆| �� fk��. (3.51)

In order to have real solutions, either ∆ or fk should be zero. However, ∆ � 0 implies that there is no
superconductivity so in order get topological superconductivity, the spin-orbit splitting term fk should vanish.
This means that the nodal points should satisfy the following two equations:

ηB + ηCk2
+ Dk3 cos(3θ) � 0, (3.52)

Ak2
� µ ±

√(
µBHext

) 2
− |∆|

2. (3.53)

These equations are equivalent to equations (4a) and (4b) in Wang et al[19].

With the first equation, a minimum and maximum of k can be calculated at which nodal points can be calculated.
The k3 term makes solving exactly tricky, but using the method described by Wang et al., one can approximate
eq. (3.52) as

k2
� −

B
C
−
ηD cos(3θ)

C
k3
≈ −

B
C
−
ηD cos(3θ)

C

(
−

B
C

) 3/2
. (3.54)

Defining k2
0 � −B/C > 0 and noting that D/C < 0, the minimum and maximum of k2 are given by

k2
min � k2

0

(
1 +

D
C

k0

)
, (3.55)

k2
max � k2

0

(
1 − D

C
k0

)
. (3.56)

This means that nodal points can be found when

Ak2
min � µmin < µ ±

√(
µBHext

) 2
− |∆|

2 < Ak2
max � µmax . (3.57)

In Wang et al., a distinction is made when the equation holds for both + and − or only for one of the two signs.
These will be called the twelve and six nodal point topological superconducting phase respectively. The region
of the chemical potential where SOI vanishes is given by (µmin , µmax ) and will also be called the vanishing
region. As mentioned in the introduction, it is expected that the critical field is suppressed in this region.

3.4 Comparison with literature
A paper where BdG formalism is used to calculate the critical field is He et al.[31], although their expression
of the free energy (equation (1)) differs from eq. (3.20). It can be shown, however, that these equations are
equivalent. By using cosh(x) �

[
exp(x) + exp(−x)

]
/2, eq. (3.20) can be rewritten as

Φ �
|∆|

2

V
−

1
2

kBT
∑
k,i

[ εk,i

4
+ log

(
1 + exp

(
−εk,i

kBT

) ) ]
. (3.58)

However,
∑

k,i εk,i/4 � 0 due to the particle-hole symmetry of the BdG Hamiltonian, and equation (1) of He et
al. will be recovered5. In He et al.’s expression, nothing is mentioned about a cutoff energy. The origin of the
cutoff energy has already been explained at the start of the chapter and should already be considered when
expressing the Hamiltonian in eq. (3.1).

The derivation of the BdG Hamiltonian in section 3.1.1 is somewhat similar to the Bogoliubov-Valatin [32, 33]
transformation method explained in Tinkham [34]. The main difference, however, is that a ‘trial transformation’
has been used to diagonalize the Hamiltonian in Tinkham, while the BdG formalism explained in section 3.1.1
actually describes a method to find the canonical transformation that diagonalizes the Hamiltonian. An other
difference is that the expressions involving density of states are a factor 1/2 off compared to the expressions

5All summations in He et al. have 1/V (inverse of volume) prefactor in order to obtain energy per unit volume, but for computational
purposes and the fact that no positional dependence is assumed, this factor is not relevant in this thesis.
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in this thesis. Examples include the expression of the superconducting gap at zero temperature and field in
the weak coupling limit (equation (3.34) in Tinkham, eq. (3.30) in this thesis), and the integral expression for
the critical temperature (equation (3.51) in Tinkam, eq. (3.33) in this thesis). The reason of this discrepancy
has to do with how density of states is defined: in Tinkham, the density of states only involves the spin-up
or spin-down particles6, while in this thesis, Ntot (0) is the total density of states including both spin-up and
spin-down. The additional factor 1/2 in front of Ntot (0) in this thesis is therefore an appropriate correction
to the expression in Tinkham. It is also worth to mention that eq. (3.31) is equivalent to the self-consistency
equation (3.50) derived in Tinkham.

6The derivation in Tinkham is also assumes that there is no SOI.
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Chapter 4

Numerical model

This chapter introduces a numerical model of the TMD monolayer, which is based on the BdG formalism
explained in the previous chapter. The main purpose of this model is to find the critical field as function of
chemical potential and ∆0, and topological phase diagrams as function of temperature and external field can
also be found. In section 4.1, a description of the model will be provided. Although the numerical analysis
in this research has been done with python, the description of the model will be more general so that it can
also be applied to other languages. In section 4.2, the model will analyzed critically. This includes the input
values of the model, whether the superconducting pairing converges to a specific value in the weak-coupling
limit, the uncertainty of the calculations, and the results of the model in the case of no spin-orbit interaction.
In section 4.3, the results (i.e. the critical field and topological phase diagram) of the model will be displayed.
There will also be a brief discussion how these results can be related to experiments.

4.1 Description of model
The procedure of calculating the critical field consists of roughly 4 steps:

1. obtain the k · p parameters for the Hamiltonian of the conduction band given by eq. (3.45);
2. generate a grid of k-points and filter all energies at those points that lie too far away from the chemical

potential;
3. set the temperature to zero, and find the superconducting pairing as a function of external field by

minimizing the free energy;
4. find the critical field by finding the the external field for which the superconducting pairing vanishes.

In the next subsections, these steps will be discussed in more detail. Step 1 and 2 are also applicable when one
wants to plot a topological phase diagram. From there on, one needs to obtain ∆ by minimizing the free energy
as function of temperature and external field. The phase at a specific temperature and external field can then
be determined by the question if ∆ is zero and if there are nodal points according to eq. (3.57).

4.1.1 k · p parameters
As can be seen in eq. (3.45), the k · p Hamiltonian can be described by 4 parameters A, B, C,D that are material
dependent. In this research, MoS2, MoSe2, and MoTe2 are investigated and the values of the 4 parameters for
these materials are shown in table 4.1. These values are based on the calculated parameters from Wang et
al.[19]: the values for MoS2 and MoSe2 are derived from the k · p model described in Fang et al.[25], while the
values for MoTe2 are based on the k · p model described by Kormányos et al.[35] For all three materials, the
Löwdin partition method has been used [36]. An other derivation of the k · p parameters A, B, C, D has been
explained in section 2.3. Using this method, the same values for B, C, D can be found for MoS2 and MoSe2.
For MoTe2, the correct values B, C, D are more difficult to obtain due to the extra spin dependence of the k · p
parameters in Kormányos et al., but the results can be retrieved when taking the average. The values for A,
however, may differ as the Löwdin partition method gives a different spin-independent term [36].

From the k ·p parameters, one can also derive the vanishing region (µmin , µmax ), which is important to explain
nodal topological superconductivity. These values can be computed using eqs. (3.55) to (3.57) in section 3.3,
and are shown in table 4.2. The vanishing region is also calculated by Wang et al.[19] (table 1), but the values
slightly differ as Wang et al. used an additional approximation.
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Table 4.1: The 4 parameters A, B, C, D of eq. (3.45) for MoS2, MoSe2, and MoTe2. Values are based on Wang et al.[19]

A [eV Å2] B [eV] C [eV Å2] D [eV Å3]

MoS2 8.1063 −0.0015 0.3645 −0.1570
MoSe2 6.3500 −0.0106 0.5018 −0.2279
MoTe2 6.1451 −0.0180 0.6964 −0.6575

Table 4.2: The vanishing region for MoS2, MoSe2, and MoTe2. All values are in units of meV and are calculated from
eqs. (3.55) to (3.57).

MoS2 MoSe2 MoTe2

µmin 32.4 125.3 134.7
µmax 34.3 143.0 182.9

4.1.2 k-point generation
Initially, a grid of k-points can be generated by taking the Cartesian product of equally spaced kx values,
equally spaced ky values and the two different valleys η � ±1. The values for both kx and ky will go from
−kmax to kmax , and kmax has to be large enough so that all k-points are considered that have energies that lie
close enough to the chemical potential. At the same time, kmax must not be too large in order to minimize
noise and computation time. In order to find a good upper bound, one can equate the (lower) eigenvalue of
the Hamiltonian in eq. (3.45) with the maximum energy Emax � µ + ED , which gives

Emax � Ak2
max ±

(
B + Ck2

max

)
± Dk3

max . (4.1)

where ± must be replaced with either a + or a − such that it maximizes kmax . Solving the equation for kmax is
tricky due to the cubic trigonal warping term, but a similar trick can be done as in section 3.3 when finding the
minimum and maximum k for nodal points. Neglecting the trigonal warping term gives a maximum given by

k0,max �

√
Emax − B

A − C
, (4.2)

where −B in the numerator and −C in the denominator can be justified by the fact that B < 0 and C > 0. By
using the fixed point method, an upper bound for kmax can be found, which is given by

kmax ≈

√
Emax − B − Dk3

0,max

A − C
≤ k0,max

√
1 − 2

k0,max

A − C
D. (4.3)

The upper bound can be justified by the fact that D < 0 and |A| � |B | , |C | , |D | . The latter condition ensures
that the next iteration of the fixed point method will shift the value for kmax much less than the previous one,
hence the factor 2 in the upper bound.

Once the grid has been generated, the k-points need to be filtered such that only energies that are close enough
to the chemical potential are considered, that is

µ − ~ωD < εk < µ + ~ωD . (4.4)

Filling in the expression for the eigenvalues of the BdG Hamiltonian of the TMD monolayer, and setting ∆ and
the external field to zero, this condition will become

��|ξk | + s�� fk���� < ~ωD , (4.5)

where ξk and fk have the same definition as in eq. (3.47) and s � ±1. Only the k and s that satisfy eq. (4.5) will
be considered in the calculation of the free energy.

An example of filtering the k-grid for MoTe2 is demonstrated in fig. 4.1. From fig. 4.1a, it can be seen that the
chemical potential µ is set at 0.25 eV and ~ωD � 0.05 eV. The selected k points in case of η � 1 are indicated
in fig. 4.1b1, which displays an triangularly distorted annulus that lies inside the bounds [−kmax , kmax] for both
kx and ky . Note that set of k-points that satisfy eq. (4.5) for s � +1 (red region in fig. 4.1b) must be a subset of
the k-points that satisfy eq. (4.5) for s � −1 (yellow + red region in eq. (4.5)).

1The case η � −1 only inverts the distorted annulus shape around the point k � 0.
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Figure 4.1: Demonstration of filtering of k-points. (a) Visualization of the lowest conduction band of MoTe2 around the
K-point obtained from the k · p Hamiltonian. The red band is spin-up, the blue band is spin down. The chemical potential
(black dotted horizontal line) and the Debye energy (light blue region) are indicated in the figure as well. (b) Grid of
k-points after filtering, using the chemical potential and Debye energy shown in (a). The blue region are k-points that are
filtered away, the yellow region are the k-points that satisfy eq. (4.5) for s � −1 only, and the red region are the k-points
that satisfy eq. (4.5) for both s � −1 and s � +1. The upper and lower bound for both kx and ky in the figure are kmax and
−kmax respectively, where kmax is defined in eq. (4.3).

4.1.3 Minimizing the free energy
Using the k-points after filtering, one can now calculate the free energy for any temperature T, external field
Hext , and superconducting pairing ∆ using the general expression given by eq. (3.20), and the expression for
the eigenvalues given by eq. (3.47). The temperature and external field can be chosen freely, but ∆must be such
that it minimizes the free energy. In order to find ∆, one needs first to find an expression for the interaction
strength V , which can be calculated using eq. (3.27). This expression requires the (maximum) superconducting
pairing∆0 at zero temperature and field, which will be assumed to be known in this model. Once an expression
for V has been found, one can express the free energy as a single variable function Φ(∆) while the temperature
and external field will be kept fixed. The ∆ that minimizes the free energy should lie between 0 and ∆0.

Finding a global minimum of a single variable function in a constrained domain is possible and an algorithm
is described by Brent in his book in chapter 6 [37]. This algorithm, however, requires an upper bound of
the second derivative of this function. In order to find this upper bound, note that the free energy given by
eq. (3.20) consists of two terms: a positive |∆|2/V term and a negative summation term. Using the eigenvalues
given by eq. (3.47), it can be derived that the summation term will grow linearly with |∆| . This implies that
the second derivative of the free energy with respect to |∆| will converge to 2/V as |∆| → ∞. This, however,
does not guarantee that the second derivative will stay below 2/V for low |∆| , so it is required to look at the
expression in more detail. At zero temperature and external field, the second derivative of the free energy can
be expressed as

∂2Φ

∂|∆|2
�

2
V
−

∑
k,s∈Sk

(
|ξk | + s�� fk��

) 2

2
(
|∆|

2
+

(
|ξk | + s�� fk��

) 2) 3/2 ≤
2
V
. (4.6)

Thus at zero external field, 2/V is an appropriate upper bound for the second derivative of the free energy.
However, this upper bound may not hold in case of finite external fields. This can be seen from the expression
of the second derivative of the free energy at |∆| � 0 (??): the sum term may give positive values for s � −1 if
the external field becomes large. If Hext →∞, the second derivative at T � 0 is then given by

∂2Φ

∂|∆|2
�

2
V
−

∑
k,s∈Sk

ξ2
ks

2
(
|∆|

2
+ ξ2

k

) 3/2 ≤
2
V

+

∑
k∈S−

1
2|ξk |

, (4.7)

where S− denotes the set of k-points that satisfies eq. (4.5) only if s � −1. As higher temperatures only weaken
the ∆-dependence of the sum term of the free energy, eq. (4.7) is a safe upper bound.

In fig. 4.2, plots of the free energy at zero temperature for several magnetic fields are displayed for MoSe2. For
all figures, µ � 0.13 eV, ~ωD � 30 meV, and ∆0 � 1 meV. A 500× 500 equally spaced k-point grid has been used
during computation and the sizing and filtering of this grid has been done in agreement with the procedure
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described in section 4.1.2. The vertical dotted line indicates the ∆ that minimizes the free energy according to
Brent’s algorithm mentioned earlier. It can be seen that in all cases, the algorithm picks the correct ∆ so the
issue of a too low upper bound for the second derivative does not arise in this case.
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Figure 4.2: Plots of the free energy of MoSe2 at zero temperature as function of ∆/∆0 for µ � 0.13 eV, ~ωD � 30 meV, and
∆0 � 1 meV. A 500 × 500 equally spaced k-point grid is used for these plots and the entire procedure of grid generation is
described in section 4.1.2. The vertical dotted line indicates the found global minimum using Brent’s algorithm explained
in section 4.1.3 and the results are all in agreement with the shown plots. Hp � ∆0/

√
2 is the Pauli limit.

4.1.4 Finding the critical field
The last step is to find the critical field as a function of µ and ∆0. In order to find this critical field, one need to
find for which external field Hext , the superconducting pairing ∆ will vanish. Since ∆ should decrease when
the external fields increases, the critical field can be found with a root-finding algorithm. The algorithm that is
considered to be the most efficient is also from Brent and is described in chapter 4 of his book [37]. In python,
the algorithm is already implemented in the Scipy library under the name scipy.optimize.brentq. By doing
this process for several chemical potential and∆0, a plot of the critical field as function of chemical potential and
∆0 can be made. A demonstration of the root-finding algorithm to find the critical field for MoS2 is displayed in
fig. 4.3. An equally spaced 500×500 k-point grid has been used for the calculation. Furthermore ~ωD � 30 meV
and ∆0 � 1 meV. The obtained critical fields (vertical dotted lines in the figures) are consistent with the plots of
∆ as a function of the external field.

4.2 Analysis of model
4.2.1 Practical input values
In the numerical model presented in section 4.1, the input parameters are the temperature T, the external field
Hext , the chemical potential µ, the superconducting pairing at zero temperature and magnetic field ∆0, the
cutoff energy ~ωD , and the size of the equally spaced k-point grid. The highest relevant temperature (i.e. the
critical temperature) is related to∆0. In the weak-coupling limit, it is known that∆0 and the critical temperature
are related by eq. (3.33). According to Lu et al., the maximum critical temperature of MoS2 is around 10 K [18].
If the weak-coupling limit can be applied to TMD monolayer superconductors, then ∆0 ≈ 1.5 meV. According
to Peng et al., the Debye energy of MoS2 is 22.6 meV [38], which looks consistent with the requirement that
~ωD � ∆0 for weak-coupling superconductors. In a more recent experiment by Shi et al., it has been found
that MoSe2 has a maximum critical temperature of 7.1 K [39], which comes down to a superconducting pairing
of ∆0 ≈ 1.1 meV in the weak-coupling limit. The Debye energy of MoSe2 is 15.3 meV according to Peng et al.,
so it is also arguable that MoSe2 can be described as a weak-coupling superconductor. However, in order to
conclude whether the Debye energy is high enough for the weak-coupling limit, one need to consider if the
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Figure 4.3: Demonstration of root finding algorithm to find the critical field for MoS2 at several chemical potential.
Hp � ∆0/

√
2 indicates the Pauli limit. Calculations are done for an equally spaced 500×500 k-point grid, and ~ωD � 30 meV,

and ∆0 � 1 meV. The vertically dotted lines in the figures indicate the critical fields according to the root-finding algorithm
and are consistent with the plots of ∆ as function of the external field.

value of ∆ is sufficiently converged, which is explained in more detail in the next section.

4.2.2 Convergence in the weak coupling limit
In this thesis, the cutoff energy is equal to the Debye energy ~ωD . In some reports, however, the cutoff energy
is set to a finite number of times the Debye energy (e.g. 3 times [40, 41]). In the weak-coupling limit when
the cutoff energy energy diverges, the ∆ that minimizes the free energy should converge to a specific value.
This means that in this limit, it should not matter how large the cutoff energy is as long as it is much larger
than the maximum superconducting pairing ∆0. In fig. 4.4, the convergence of ∆ is demonstrated for MoSe2
at µ � 0.15 eV. It can been seen that ∆ will indeed converge for large cutoff energies that are several times
∆0, although noise will be visible if the number k-points is too low. This is in particular the case when one
approaches the critical field (compare figs. 4.4b and 4.4c).

4.2.3 Uncertainty analysis
As shown in fig. 4.4, the value of ∆ that minimizes the free energy has an uncertainty depending on the
resolution of the k-point grid. The question is how high the resolution of the k-point grid should be in order
to make the uncertainty acceptably low. As it can be very time consuming to calculate the uncertainty of the
critical field for every∆0 and µ, it is better to have an upper bound of the uncertainty given the upper and lower
bound of µ and ∆0. This suggest the following procedure to determine the maximum uncertainty as function
of the resolution of the k-point grid: for a given material with a given µ and ∆0, calculate the critical field for
several random cutoff energies ED � ∆0. The uncertainty can then be determined by computing the standard
deviation of the found critical fields. This process will be done for all combinations of boundary values of µ
and ∆0 and in the end, one will simply pick the combination with the highest uncertainty.

The goal now is to find the minimum resolution of the k-point grid such that the relative uncertainty of the
critical field is below a certain value. In this thesis, it will be assumed that a relative uncertainty of 0.05 (5%) is
acceptable. The calculated uncertainties as function of the resolution for MoSe2 are displayed in fig. 4.5. This is
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Figure 4.4: The superconducting pairing ∆ as a function of the cutoff energy for MoSe2 at µ � 0.15 eV. Calculations are
done with a 100 × 100 (blue), 250 × 250 (yellow), and 500 × 500 (green) k-point grid. Again Hp � ∆0/

√
2 is the Pauli limit.

done by picking 12 random cutoff energies using an uniform distribution on the interval [15∆0 , 20∆0], and then
calculate the relative uncertainty by dividing the standard deviation by the mean. Comparing fig. 4.5e with
the others, it can been seen that the highest uncertainty is at µ � 134 meV and ∆0 � 0.1 meV. It should be noted
that this chemical potential is centered within the vanishing region of MoSe2. From fig. 4.5e, it appears that a
1000×1000 k-point grid is sufficient in order to obtain a relative uncertainty below 5% for the calculated critical
field of MoSe2. Also for other materials, the highest uncertainty can be found for low ∆0 and for a chemical
potential centered in the vanishing region. It can be argued that a 600 × 600 k-point grid is sufficient for MoS2
and a 1200 × 1200 k-point grid is sufficient for MoTe2 (see fig. B.1 in appendix B).

4.2.4 Free electron case
As discussed in section 3.2.1, it is expected that the critical field in case of 2D free electrons should reach the Pauli
limit (see eq. (3.43)). Moreover, one should also expect to find that the critical temperature is given by eq. (3.33).
The presented numerical k · p model can be reduced to a free electron model by setting A ≈ 3.81 eV Å−2 and
B � C � D � 0. Plots of the critical field and temperature of the model as well as the analytical expressions
(eqs. (3.33) and (3.43) respectively) are shown in fig. 4.6. During the calculation, µ � 0.1 eV, ED � 15∆0, and
the size of the k-point grid is 500 × 500. It can be seen in this figure that the results of the model are in good
agreement with the analytical expressions.

4.3 Results and discussion
4.3.1 Critical field
Using the procedure described in section 4.1 and the desired resolutions discussed in section 4.2.3, the critical
field diagrams are calculated and displayed in fig. 4.7. For every chemical potential µ and maximum super-
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Figure 4.5: The relative uncertainty of the critical field as a function of the resolution for MoSe2. A resolution of n means
that an n × n k-point grid has been used.

conducting pairing ∆0, a separate k-point grid has been generated and a cutoff energy of 15∆0 has been used
in the calculations. The white dotted lines in the figure indicate the vanishing region given in table 4.2. The
figures confirm that the critical field will be suppressed when the chemical potential approaches the vanishing
region. Furthermore, it can also be seen that the critical field is lower for lower ∆0. However, the critical field
with respect to the Pauli limit Hc/Hp is higher for lower ∆0. This may be the effect of the SOI, which contributes
to the critical field without any ∆0 dependence. An other remarkable feature is that the critical field will be
completely suppressed to (virtually) the Pauli limit in case of MoS2. This can be explained from the fact that the
spin-orbit interaction of MoS2, compared to the other materials, is very weak at the bottom of the conduction
band. For MoSe2 and MoTe2, there is a dark strip visible near µ � 0. This is likely the effect of the higher
energetic spin-down band at the +K point (and the spin-up band at the −K point) as the strip is located at µ � B
in both cases.

Using the results in fig. 4.7, one can now make a prediction of the critical field in experiments. Previous
experiments have shown that the critical temperature (and thus ∆0) depends on the carrier density in the
lowest conduction band (and thus the chemical potential). Thus, for each material, a trajectory through the
diagram in fig. 4.7 can be associated with. Ye et al. and Lu et al.[18, 42] have shown that MoS2 will become
superconducting if the carrier density in the conduction band exceeds 6 × 1013 cm−2. If the effect of spin-orbit
interaction is negligible, the corresponding chemical potential can be calculated by

µ ≈ Aπn , (4.8)

where A is the k · p parameter discussed in section 3.2.2 and n the carrier density. Therefore, the minimum
chemical potential required to obtain superconducting MoS2 is given by µc � 153 meV, and this will be called
the critical chemical potential. Critical chemical potentials are also indicated in fig. 4.7 with red solid lines.
From Shi et al.[39], it can be found that the critical carrier density for MoSe2 is 8 × 1013 cm−2, which results in a
critical chemical potential of 160 meV. However, this value may be overestimated, because the temperature of
the experiment did not go below 2 K. A calculation in a more recent experiment by Miao et al.[43] suggests that
the critical density is rather roughly 6 × 1013 cm−2, the same value as for MoS2. This implies critical chemical
potential of 120 meV which is just below the vanishing region (see also fig. 4.7e). Furthermore, Shi et al. suggest
that the critical density of MoTe2 has to be at least 7 × 1013 cm−2 as no superconductivity has been found for
this maximum carrier density. Again, this value may be overestimated due to the fact the experiment did not
go below 2 K. If the critical carrier density is the same as for MoS2 and MoSe2, then the corresponding critical
chemical potential for MoTe2 is 116 meV, well below the vanishing region (see fig. 4.7f).

Due to the fact that the critical chemical potential of MoS2 is above the vanishing region, one does not expect to
see a drop of the critical field for these two materials. Data from the supplementary data of Ye et al. (figure S3b)
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Figure 4.6: The critical field (a) and temperature (b) as a function of ∆0 in the free electron case. The red lines are computed
using the numerical k · p model, while the black dashed lines are the analytical expressions discussed in section 3.1.
Calculation is done for µ � 0.1 eV, ED � 15∆0, and a 500 × 500 k-point grid.

also confirm this. For MoSe2, the critical carrier density is seemingly 8 × 1013 meV in Shi et al.’s experiment,
which results in a critical chemical potential above the vanishing region. The supplementary data of the critical
field in Shi et al. (figure S5c) also confirms this as there is no drop of critical field visible in the dome. However,
for a lower temperature, it may be possible to get the critical chemical potential below the vanishing region. In
that case, it would be expected to see a suppression of the critical field.

4.3.2 Topological phase diagram
4.3.3 Varying chemical potential and critical field, fixed temperature
The topological phase diagram for MoTe2 at a fixed temperature of 2 K is shown in fig. 4.8. All the calculations
are done for ∆0 � 1 meV, and ED � 15∆0. Furthermore, the resolution of the k-point grid was 500 × 500 for all
calculations. The reason why 2 K has been chosen instead of 0 K is that it is very difficult to accurately determine
the transition of superconducting phase to normal phase when at 0 K. Consistent with figure 1b in Wang et
al.[19], the twelve nodal point topological superconductivity can only be obtained when the chemical potential
is inside the vanishing region. Furthermore, one does need an external field energy µBHext of approximately
0.8 meV to obtain the topological phase. The six nodal point topological superconducting phase is visible near
the boundaries of the vanishing region. Figure 4.8 also makes clear that only close to the vanishing region,
nodal topological superconductivity is present.

4.3.4 Varying temperature and critical field, fixed chemical potential
Topological phase diagrams for different materials and chemical potential are shown in fig. 4.9. All the
calculations are done for ∆0 � 1 meV, and ED � 15∆0. Furthermore, the resolution of the k-point grid was
500 × 500 for all calculations. Figures 4.9a to 4.9c show the phase diagram of the three materials mentioned in
section 4.1.1 in case the chemical potential lies (approximately) in the middle of the vanishing region. In that
case, the trivial topological phase becomes a twelve nodal point topological superconducting phase when the
field is sufficiently increased. This can be explained from figure 1b in Wang et al.[19] or eq. (3.57): when the
the chemical potential is in the middle of the vanishing region, the material will be in the twelve nodal point
topological superconducting phase when

0 < H2
ext − ∆(Hext )2 <

( µmax − µmin

2

) 2
. (4.9)

Otherwise, the material is in the trivial superconducting phase when ∆ > 0 and in the normal phase when
∆ � 0. Note that ∆(Hext ) decreases as the external field increases. Figures 4.9a to 4.9c also show that strength
of the spin-orbit interaction has a significant effect on the topological phase diagram. It can clearly be seen that
a nodal topological superconducting phase is much easier to obtain in materials with a higher SOI like MoTe2.

In case the chemical potential is not centered in the vanishing region, the material may also be in the six nodal
point topological superconducting phase if the external field is enhanced even more (fig. 4.9d). However, this

does not mean that this phase will always be visible as ∆ may become zero before
√

H2
ext − ∆(Hext )2 is large
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Figure 4.7: Critical field diagrams for (a,d) MoS2, (b,e) MoSe2, and (c,f) MoTe2 as function of chemical potential and ∆0.
In accordance with the discussion in section 4.2.3, the used resolutions for the calculations are 600 × 600, 1000 × 1000 and
1200 × 1200 respectively. For every µ and ∆0, a separate k-point grid has been generated and the cutoff energy is set to
ED � 15∆0. The white dotted lines indicate vanishing region based on the values in table 4.2 and the red solid line indicate
the critical chemical potential. The diagrams in (a), (b), and (c) show the actual value of the critical field, while the diagrams
in (d), (e), (f) show the log of critical field with respect to the Pauli limit Hp .

enough. Once the chemical potential lies outside the vanishing region, it is not possible that the material is
in the twelve nodal point topological superconducting phase (fig. 4.9e). The material may be in the six nodal
point topological phase when

∆µ <
√

H2
ext − ∆(Hext )2 < ∆µ + µmax − µmin , (4.10)

where ∆µ is the nearest distance of the chemical potential from the vanishing region. As the minimum value
of ∆µ for nodal topological superconductivity increases faster than the energy of the critical field, no nodal
topological superconductivity will be visible when ∆µ is high enough (fig. 4.9f). Thus, nodal topological
superconductivity is only acquirable when the chemical potential is in or close to the vanishing region.
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Figure 4.8: Topological phase diagram of MoTe2 at 2 K. The possible phases are: trivial superconducting phase (blue);
twelve nodal point topological superconducting phase (yellow); six nodal point topological superconducting phase (green);
normal phase (gray). All calculations are done with a 500× 500 k-point grid and for ∆0 � 1 meV, and ED � 15∆0. The black
dashed lines indicate the vanishing region of MoTe2
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(a) MoS2, µ � 0.033 eV.
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(b) MoSe2, µ � 0.134 eV.
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(c) MoTe2, µ � 0.159 eV.
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(d) MoTe2, µ � 0.18 eV.
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(e) MoTe2, µ � 0.185 eV.
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(f) MoTe2, µ � 0.19 eV.

Figure 4.9: Topological phase diagrams for different materials at different chemical potential. The possible phases are:
trivial superconducting phase (blue); twelve nodal point topological superconducting phase (yellow); six nodal point
topological superconducting phase (green); normal phase (gray). All calculations are done with a 500 × 500 k-point grid
and for ∆0 � 1 meV, and ED � 15∆0. Hp denotes the Pauli limit while Tc denotes the critical temperature defined in
eq. (3.33).
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Chapter 5

Conclusion

In this thesis, it has been shown that the critical field with respect to the Pauli limit is expected to drop when
the vanishing region is approached. This drop, however, can only be seen if the critical chemical potential is
below the vanishing region. For MoS2, this is not the case and it is therefore not expected to see a suppression
of the critical field. For MoSe2, it is possible to have a critical chemical potential below the vanishing region, but
this requires temperatures to be below 2 K. For MoTe2, it is not clear what the actual critical chemical potential
is, but if the critical carrier density is the same as for MoS2, then a suppression of the critical field is expected.
The critical field diagrams are based on the k · p model, which is accurate as long as the chemical potential is
not too high so that the effect of other conduction band minima is negligible.

In this thesis, it has also been shown that nodal topological superconducting phase can be acquired when
the chemical potential is within or not too far away from the vanishing region. This means that it is only
possible when there is superconductivity for a chemical potential near the vanishing region, and this is not the
case for MoS2. MoSe2 and MoTe2, on the other hand, are more suitable candidates to show nodal topological
superconductivity as the critical chemical potential may lie below the vanishing region. Nodal topological
superconductivity, however, is easier to show for MoTe2 as the SOI is stronger, causing a higher critical field.
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Appendix A

Convergence of ∆ that minimizes free
energy

To analyze the convergence of ∆ in eq. (3.31) when ~ωD →∞, one need to find approximate expressions of the
left hand side and right hand side for large ~ωD . To start with the left hand side, one can start the expression
given in eq. (3.29):

1
V

�
Ntot (0)

2
sinh−1
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~ωD

|∆0 |
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2
log*.
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(A.1)

The right hand side can be approximated by

rhs �
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2

~ωD∫
0

tanh
*..
,

√
ξ2 + |∆|2

2kBT
+//
-

dξ√
ξ2 + |∆|2

≈
Ntot (0)

2
log*.

,

~ωD

|∆|

*.
,
1 +

√
1 +

[
|∆|

~ωD

] 2+/
-

+/
-
− C

≈
Ntot (0)

2
log

(
α

2~ωD

|∆|
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(A.2)

This approximation can be justified by the fact that tanh
(√
ξ2 + |∆|2/2kBT

)
→ 1 when ξ → ~ωD → ∞.

However, as the integral also involves low energies for which the tanh term is less than 1, one need to subtract
a constant C > 0 that is independent from ~ωD . The independence of C from ~ωD is justified by the fact
that it is much larger than the Boltzmann energy kBT. This constant can be rewritten as an other constant
α � exp(−C) < 1 inside the log. From eqs. (A.1) and (A.2), it can be seen that both sides of eq. (3.31) will grow
logarithmic with respect to ~ωD . It can also be seen that |∆| will converge to α |∆0 | in order to balance the
equation, what was to be shown.
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Appendix B

The relative uncertainty for MoS2 and
MoTe2 as function of resolution
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Figure B.1: The relative uncertainty of the critical field as a function of the resolution for (a) MoS2 and (b) MoTe2. The
chemical potentials are 33 meV and 159 meV respectively and ∆0 � 0.1 meV for both plots. Just as in the case of MoSe2, the
highest uncertainty can be found for low ∆0 and at the center of the vanishing point, which is also visualized in the figures.
The same procedure explained in section 4.2.3 has been used in order to calculate the relative uncertainties. Furthermore,
the figures show that a 600×600 k-point grid and a 1200×1200 k-point grid are sufficient for MoS2 and MoTe2 respectively,
in order to be below the upper bound of 5% relative uncertainty. Similar to fig. 4.5, a resolution of n implies an n×n equally
spaced k-point grid has been used.
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